【題目】在△中,已知是邊的中點,是△的重心,過點的直線分別交、于點、.
(1)如圖1,當∥時,求證:;
(2)如圖2,當和不平行,且點、分別在線段、上時,(1)中的結(jié)論是否成立?如果成立,請給出證明;如果不成立,請說明理由.
(3)如圖3,當點在的延長線上或點在的延長線上時,(1)中的結(jié)論是否成立?如果成立,請給出證明;如果不成立,請說明理由.
【答案】(1)證明見解析;(2)(1)中結(jié)論成立,理由見解析;(3)(1)中結(jié)論不成立,理由見解析.
【解析】
(1)根據(jù)G為重心可知,由EF∥BC可知,,故
(2)過點作∥交的延長線于點,、的延長線相交于點,則,,故要求式子,又,D是的中點,即,故有,所以原式,又有,得,故結(jié)論成立;
(3)由G點為重心可知,當點與點重合時,為中點,,故當點在的延長線上時,,,則,同理:當點在的延長線上時,,故結(jié)論不成立.
(1)證明: 是△重心
,
又∥,
,,
則.
(2)(1)中結(jié)論成立,理由如下:
如圖,過點作∥交的延長線于點,、的延長線相交于點,
則,
又
而是的中點,即
又
結(jié)論成立;
(3)(1)中結(jié)論不成立,理由如下:
當點與點重合時,為中點,,
點在的延長線上時,,
,則,
同理:當點在的延長線上時,,
結(jié)論不成立.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,,為對角線上一動點,連接,,過點作,交直線于點.點從點出發(fā),沿著方向以每秒的速度運動,當點與點重合時,運動停止.設(shè)的面積為,點的運動時間為秒.
(1)求證:;
(2)求y與x之間關(guān)系的函數(shù)表達式,并寫出自變量x的取值范圍;
(3)求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨機抽取某小吃店一周的營業(yè)額(單位:元)如下表:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合計 |
540 | 680 | 640 | 640 | 780 | 1110 | 1070 | 5460 |
(1)分析數(shù)據(jù),填空:這組數(shù)據(jù)的平均數(shù)是 元,中位數(shù)是 元,眾數(shù)是 元.
(2)估計一個月的營業(yè)額(按30天計算):
①星期一到星期五營業(yè)額相差不大,用這5天的平均數(shù)估算合適么: .(填“合適”或“不合適”)
②選擇一個你認為最合適的數(shù)據(jù)估算這個小吃店一個月的營業(yè)額.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為4,延長至使,以為邊在上方作正方形,延長交于,連接、,為的中點,連接分別與、交于點、.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,是以點(0,3)為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組請結(jié)合題意填空,完成本題的解答、
(I)解不等式①,得
(II)解不等式②,得
(III)把不等式①和②的解集在數(shù)軸上表示出來:
(IV)原不等式組的解集為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】砸“金蛋”游戲:把210個“金蛋”連續(xù)編號為1,2,3,…,210,接著把編號是3的整數(shù)倍的“金蛋”全部砸碎;然后將剩下的“金蛋”重新連續(xù)編號為1,2,3,…,接著把編號是3的整數(shù)倍的“金蛋”全部砸碎……按照這樣的方法操作,直到無編號是3的整數(shù)倍的“金蛋”為止.操作過程中砸碎編號是“66”的“金蛋”共_____個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仙桃是遂寧市某地的特色時令水果.仙桃一上市,水果店的老板用2400元購進一批仙桃,很快售完;老板又用3700元購進第二批仙桃,所購件數(shù)是第一批的倍,但進價比第一批每件多了5元.
(1)第一批仙桃每件進價是多少元?
(2)老板以每件225元的價格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤不少于440元,剩余的仙桃每件售價至少打幾折?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型超市為了緩解停車難的問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖(如圖AC與ME平行).按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄埜鶕?jù)下圖求出汽車通過坡道口的限高DF的長.(結(jié)果精確到0.1m)
(參考數(shù)據(jù): sin28°≈0.47,cos28°≈0.88, tan28°≈0.53)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com