【題目】如圖,在RtABC中,∠B=90°,AB=5,∠C=30°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t0),過點(diǎn)DDFBC于點(diǎn)F,連接DE、EF.

1)求證:AE=DF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由;

3)當(dāng)t為何值時(shí),DEF為直角三角形?請說明理由.

【答案】(1)詳見解析;(2)能;當(dāng)t=時(shí),四邊形AEFD為菱形;(3)當(dāng)4時(shí),DEF為直角三角形.

【解析】

1)在RtDFC中利用30度所對的邊是斜邊的一半得到DF=t,故AE=DF;

(2)易證四邊形AEFD為平行四邊形,得到AD=10-2t,菱形必須有AE=AD,列出方程解出t即可;(3)DEF為直角三角形有三種情況,對三種情況分別進(jìn)行計(jì)算考慮即可

解:(1)在DFC中,∠DFC=90°,∠C=30°,DC=2t,

DF=t,

又∵AE=t,∴AE=DF;

2)能;理由如下:

ABBC,DFBC,

AEDF,又AE=DF

∴四邊形AEFD為平行四邊形,

AB==5,

AC=2AB=10

AD=AC-DC=10-2t,

若使AEFD為菱形,則需AE=AD,即t=10-2tt=,

即當(dāng)t=時(shí),四邊形AEFD為菱形;

3)①∠EDF=90°時(shí),四邊形EBFD為矩形,

RtAED中,∠ADE=C=30°,

AD=2AE,即10-2t=2t,t=

②∠DEF=90°時(shí),由(2)知EFAD,

∴∠ADE=DEF=90°,

∵∠A=90°-C=60°

AD=AE,即10-2t=t,t=4;

③∠EFD=90°時(shí),此種情況不存在;

綜上所述,當(dāng)4時(shí),DEF為直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCE,FG,H分別是AD,BC,BD,AC的中點(diǎn).

1)證明:EGEH;(2)證明:四邊形EHFG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)小海喜歡研究數(shù)學(xué)問題,在計(jì)算整式加減(﹣4x27+5x+2x+3x2)的時(shí)候,想到了小學(xué)的列豎式加減法,令A=﹣4x27+5xB2x+3x2,然后將兩個(gè)整式關(guān)于x進(jìn)行降冪排列,A=﹣4x2+5x7,B3x2+2x,最后只要寫出其各項(xiàng)系數(shù)對齊同類項(xiàng)進(jìn)行豎式計(jì)算如下:

所以,(﹣4x27+5x+2x+3x2)=﹣x2+7x7

(模仿解題)若A=﹣4x2y2+2x3y5xy3+2x4B3x3y+2x2y2y44xy3,請你按照小海的方法,先對整式A,B關(guān)于某個(gè)字母進(jìn)行降冪排列,再寫出其各項(xiàng)系數(shù)進(jìn)行豎式計(jì)算AB,并寫出AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,且點(diǎn)A0,2),點(diǎn)C1,0),BEx軸于點(diǎn)E,一次函數(shù)y=x+b經(jīng)過點(diǎn)B,交y軸于點(diǎn)D

1)求證:△AOC≌△CEB;

2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:相等的實(shí)數(shù)看作同一個(gè)實(shí)數(shù).有下列六種說法:

①數(shù)軸上有無數(shù)多個(gè)表示無理數(shù)的點(diǎn);

②帶根號的數(shù)不一定是無理數(shù);

③每個(gè)有理數(shù)都可以用數(shù)軸上唯一的點(diǎn)來表示;

④數(shù)軸上每一個(gè)點(diǎn)都表示唯一一個(gè)實(shí)數(shù);

⑤沒有最大的負(fù)實(shí)數(shù),但有最小的正實(shí)數(shù);

⑥沒有最大的正整數(shù),但有最小的正整數(shù).

其中說法錯(cuò)誤的有_____(注:填寫出所有錯(cuò)誤說法的編號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖方式折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落到C′處,折痕為EF.若AD9AB6,求折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列短文,并回答下列問題:我們把相似的概念推廣到空間:如果兩個(gè)幾何體大小不一定相等,但形狀完全相同,我們就把它們叫作相似體.

如圖,甲、乙是兩個(gè)不同的正方體,正方體都是相似體,它們的一切對應(yīng)線段之比都等于相似比( a b ),設(shè)S ,S 分別表示這兩個(gè)正方體的表面積,則

.又設(shè)V ,V 分別表示這兩個(gè)正方體的體積,則

(1)下列幾何體中,一定屬于相似體的是___

A.兩個(gè)球體 B.兩個(gè)圓錐體

C.兩個(gè)圓柱體 D.兩個(gè)長方體

(2)請歸納出相似體的三個(gè)主要性質(zhì):①相似體的一切對應(yīng)線段(或弧)的比等于__________;②相似體的表面積的比等于__________;③相似體的體積比等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

我們把表格中字母的和所得的多項(xiàng)式稱為"'特征多項(xiàng)式",例如:1格的特征多項(xiàng)式 4x+y,第 2 格的特征多項(xiàng)式 8x+4y, 回答下列問題:

(1) 3 格的特征多項(xiàng)式 4 格的待征多項(xiàng)式 , n 格的特征多項(xiàng)式 .

(2)若第 m 格的特征多項(xiàng)式與多項(xiàng)式-24x+2y-5 的和不含有 x 項(xiàng),求此特征多項(xiàng)式”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展以“我最喜愛的傳統(tǒng)文化”為主題的調(diào)查活動(dòng),從“詩詞、國畫、對聯(lián)、書法、戲曲”五種傳統(tǒng)文化中,選取喜歡的一種(只選一種)進(jìn)行調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整統(tǒng)計(jì)圖.

1)本次調(diào)查共抽取了多少名學(xué)生?

2)喜歡“書法”的有多少名學(xué)生?并補(bǔ)全條形統(tǒng)計(jì)圖;

3)求喜歡“國畫”對應(yīng)扇形圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案