【題目】如圖,在中,弦AB,CD相交于點E,=,點D在上,連結CO,并延長CO交線段AB于點F,連接OA,OB,且OA=2,∠OBA=30°
(1)求證:∠OBA=∠OCD;
(2)當AOF是直角三角形時,求EF的長;
(3)是否存在點F,使得,若存在,請求出EF的長,若不存在,請說明理由.
科目:初中數學 來源: 題型:
【題目】.如圖,在RT△ABC中,∠C=90°,BC=8,AC=6,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時點P從A點開始在線段AC上以每秒1個單位長度的速度向點C移動.當一點停止運動,另一點也隨之停止運動.設點Q,P移動的時間為t秒.當t=____________ 秒時△APQ與△ABC相似.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
(1)把△ABC向上平移5個單位后得到對應的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;
(2)以原點O為對稱中心,再畫出與△A1B1C1關于原點O對稱的△A2B2C2,并寫出點C2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與軸交于點A、B,與y軸交于點C,點A的坐標為(-4,0),P是拋物線上一點 (點P與點A、B、C不重合).
(1)b= ,點B的坐標是 ;
(2)設直線PB直線AC交于點M,是否存在這樣的點P,使得PM:MB=1:2?若存在,求出點P的橫坐標;若不存在,請說明理由;
(3)連接AC、BC,判斷∠CAB和∠CBA的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在邊長為l的正方形網格中如圖所示.
①以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點C的異側,并表示出A1的坐標.
②作出△ABC繞點C順時針旋轉90°后的圖形△A2B2C.
③在②的條件下求出點B經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的與的部分對應值如下表:
下列結論:①拋物線的開口向下;②其圖象的對稱軸為;③當時,函數值隨的增大而增大;④方程有一個根大于4;⑤若,且,則.其中正確的結論有( )
A.①②③B.①②③④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著人們的生活水平不斷提高,人們越來越注重生活品質,注重食物營養(yǎng).水果罐頭在保存鮮度和營養(yǎng)方面得天獨厚,僅次于現摘水果,水果罐頭不僅果肉好吃,水果的本色本味完全融入到糖水中,罐頭水的風味甚至比果汁還要濃郁.某車間生產以甲、乙兩種水果為原料的某種罐頭,在一次進貨中得知,花費1.8萬元購進的甲種水果與2.4萬元購進的乙種水果質量相同,乙種水果每千克比甲種水果多2元.
(1)求甲、乙兩種水果的單價;
(2)車間將水果制成罐頭投入市場進行售賣,已知一聽罐頭需要甲乙水果各0.5千克,而每聽罐頭的成本除了水果成本之外,其他所有成本是水果成本的的還要多3元.調查發(fā)現,以28元的定價進行銷售,每天只能賣出3000聽,超市對它進行促銷,每降低1元,平均每天可多賣出1000聽,當售價為多少元時,利潤最大?最大利潤為多少?
(3)若想使得該種罐頭的銷售利潤每天達到6萬元,并且保證降價的幅度不超過定價的15%,每聽罐頭的價錢應為多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學課上,老師要求學生探究如下問題:
(1)如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1,試求∠BPC的度數.李華同學一時沒有思路,當他認真分析題目信息后,發(fā)現以PA、PB、PC的長為邊構成的三角形是直角三角形,他突然有了正確的思路:如圖2,將△BPC繞點B逆時針旋轉60°,得到△BP′A,連接PP′,易得△P′PB是等邊三角形,△PP′A是直角三角形.則∠BPC=_______°.
(2)如圖3,在正方形ABCD內有一點P,且PA=,BP=,PC=1,試求∠BPC的度數.
(3)在圖3中,若在正方形ABCD內有另一點Q,QA=a,QB=b,QC=c(a>b,a>c),試猜想a,b,c滿足什么條件時,∠BQC的度數與第(2)問中∠BPC的度數相等,請直接寫出結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com