拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點
(1)求拋物線的解析式;
(2)求拋物線與x軸的交點坐標,與y軸交點坐標;
(3)畫出這條拋物線;
(4)根據(jù)圖象回答:①當x取什么值時,y>0,y<0?②當x取什么值時,y的值隨x的增大而減小?

【答案】分析:(1)將(0,3)代入y=-x2+(m-1)x+m求得m,即可得出拋物線的解析式;
(2)令y=0,求得與x軸的交點坐標;令x=0,求得與y軸的交點坐標;
(3)得出對稱軸,頂點坐標,畫出圖象即可;
(4)當y>0時,即圖象在一、二象限內(nèi)的部分;當y<0時,即圖象在一、二象限內(nèi)的部分;在對稱軸的右側(cè),y的值隨x的增大而減小.
解答:解:(1)∵拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點,
∴m=3,
∴拋物線的解析式為y=-x2+2x+3;

(2)令y=0,得x2-2x-3=0,
解得x=-1或3,
∴拋物線與x軸的交點坐標(-1,0),(3,0);
令x=0,得y=3,
∴拋物線與y軸的交點坐標(0,3);

(3)對稱軸為x=1,頂點坐標(1,4),圖象如圖,

(4)如圖,①當-1<x<3時,y>0;
當x<-1或x>3時,y<0;
②當x>1時,y的值隨x的增大而減。
點評:本題考查了拋物線與x軸的交點問題、用待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象,是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經(jīng)過B、C兩點,點精英家教網(wǎng)A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達式;
(2)若點P在線段BC上,且S△PAC=
12
S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標,且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知一元二次方程-x2+bx+c=0的兩個實數(shù)根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代數(shù)式表示);
(2)設(shè)拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標;
(3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數(shù)根,則c的值可以是
2
.(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是( 。

查看答案和解析>>

同步練習(xí)冊答案