【題目】位于重慶市匯北區(qū)的照母山森林公園乘承近自然生態(tài)理念營造森林風(fēng)景,雖由人作,宛自天開,凸顯自然風(fēng)骨與原生野趣.山中最為矚目的經(jīng)典當(dāng)屬攬星塔.登臨塔頂,可上九天邀月攬星,可鳥瞰新區(qū),領(lǐng)略附近樓宇的壯美;亦可遠(yuǎn)眺兩江勝景.登臨此塔,讓你有飄然若仙的聯(lián)想又有登高遠(yuǎn)眺,一覽眾山小的震撼,我校某數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識(shí)估測(cè)該塔的高度,已知攬星塔AB位于坡度l:1的斜坡BC上,測(cè)量員從斜坡底端C處往前沿水平方向走了120m達(dá)到地面D處,此時(shí)測(cè)得攬星塔AB頂端A的仰角為37°,攬星塔底端B的仰角為30°,已知A、BC、D在同一平面內(nèi),則該塔AB的高度為( 。m,(結(jié)果保留整數(shù),參考數(shù)據(jù);sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73

A.31B.40C.60D.136

【答案】A

【解析】

設(shè)ABDCE,設(shè)CExm,則BExm,根據(jù)DC=120m可先列出方程求出x的值,從而得出BEDE的長,在RtADE中可求出AE的長,從而由AB=AE-BE可得到結(jié)論.

解:如圖,設(shè)ABDCE

設(shè)CExm,則BExm,

RtBDE中,∵∠BDE30°,

DE3x,

DCDECE3xx120

x60,

BE60m,DE180m,

RtADE中,AEDEtan37°180×0.75135m),

ABAEBE13560≈31(m),

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B4,0),拋物線的對(duì)稱軸交x軸于點(diǎn)D,CEAB,并與拋物線的對(duì)稱軸交于點(diǎn)E.現(xiàn)有下列結(jié)論:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正確結(jié)論的序號(hào)是 _____________________ 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn).拋物線分別交軸于兩點(diǎn),交軸于點(diǎn)

1)求該拋物線的解析式.

2)如圖2,點(diǎn)為第二象限拋物線上一點(diǎn),過點(diǎn)于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長度為,求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

3)在(2)的條件下,當(dāng)直線經(jīng)過點(diǎn)時(shí),如圖3,點(diǎn)在線段上,點(diǎn)在線段上,且,的面積為,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB的直徑,點(diǎn)PBA的延長線上,PD于點(diǎn)D,過點(diǎn)B,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E

(Ⅰ)求證:AB=BE

(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCABAC,BD平分∠ABCAC于點(diǎn)D,DE平分∠ADBAB于點(diǎn)ECFABED的延長線于F,若∠A52°,求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)在邊上,.過點(diǎn)于點(diǎn),以為一邊在內(nèi)作等邊,點(diǎn)圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過點(diǎn)于點(diǎn),作于點(diǎn).設(shè),,則最大值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一時(shí)鐘,時(shí)針OA長為6cm,分針OB長為8cmOAB隨著時(shí)間的變化不停地改變形狀.求:

1)如圖①,13點(diǎn)時(shí),OAB的面積是多少?

2)如圖②,14點(diǎn)時(shí),OAB的面積比13點(diǎn)時(shí)增大了還是減少了?為什么?

3)問多少整點(diǎn)時(shí),OAB的面積最大?最大面積是多少?請(qǐng)說明理由.

4)設(shè)∠BOAα0°≤α≤180°),試歸納α變化時(shí)OAB的面積有何變化規(guī)律(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACADBCD,以AD為直徑的⊙OABE,交ACF

1)求證:BE=CF;

2)若AE=4,BC=,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案