【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進(jìn)行了以下探索:
設(shè)(其中、、、均為整數(shù)),則有.
∴,.這樣小明就找到了一種把類似的式子化為平方式的方法.
請你仿照小明的方法解決下列問題:
(1)當(dāng)、、、均為正整數(shù)時,若,用含、的式子分別表示、,得_________,_________.
(2)利用所探索的結(jié)論,填空:(_____+_____)2;
(3)若,且、、均為正整數(shù),求的值?
【答案】(1)m2+3n2,2mn;(2)1,2;(3)a的值為12或28
【解析】
(1)利用完全平方公式展開得到(m+n)2=m2+3n2+2mn,從而可用m、n表示a、b;
(2)根據(jù)a=13,b=4得到m=1,n=2,然后填空即可;
(3)由a=m2+3n2,2mn=6和a、m、n均為正整數(shù)可確定m、n的值,再計算對應(yīng)的a的值.
解:(1)(m+n)2=m2+3n2+2mn,
∴a=m2+3n2,b=2mn;
(2)∵a=13,b=4,
∴m2+3n2=13,4=2mn,
∴m=1,n=2,
∴13+4=(1+2)2,
(3)a=m2+3n2,2mn=6,
∵a、m、n均為正整數(shù),
∴m=3,n=1或m=1,n=3,
當(dāng)m=3,n=1時,a=9+3=12,
當(dāng)m=1,n=3時,a=1+3×9=28,
∴a的值為12或28.
故答案為m2+3n2,2mn;1,2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中AB=AC.
(1)作圖:在AC上有一點D,延長BD,并在BD的延長線上取點E,使AE=AB,連AE,作∠EAC的平分線AF,AF交DE于點F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,連接CF,求證:∠BAC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期學(xué)習(xí)了分式方程的解法,下面是晶晶同學(xué)的解題過程:
解方程
解:整理,得: …………………………第①步
去分母,得: …………………………第②步
移項,得: ……………………… 第③步
合并同類項,得: ……………………… 第④步
系數(shù)化1,得: …………………………第⑤步
檢驗:當(dāng)時,
所以原方程的解是. ………………………第⑥步
上述晶晶的解題過程從第_____步開始出現(xiàn)錯誤,錯誤的原因是_________________.請你幫晶晶改正錯誤,寫出完整的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,DE=DA.
(1)求證:∠BAD=∠EDC;
(2)作出點E關(guān)于直線BC的對稱點M,連接DM、AM,猜想DM與AM的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將每件進(jìn)價元的某種商品按每件元出售,一天可銷出約件,該店想通過降低售價,增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低元,其銷售量可增加約件.
將這種商品每件的售價降低多少時,能使商店的銷售利潤為元?
這種商品的售價降低多少時,才能使商店的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,他們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當(dāng)t=1時,△ACP與△BPQ是否全等,請說明理由
(2)判斷此時線段PC和線段PQ的關(guān)系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com