【題目】如圖,每個小正方形的邊長均為1.求四邊形ABCD的面積和周長(精確到0.1).
【答案】四邊形ABCD的周長是8,四邊形ABCD的面積是17.5.
【解析】
首先根據(jù)勾股定理求得AB、BC、CD、DA、AC的長,根據(jù)勾股定理的逆定理判斷∠ABC和∠ACD是直角,即可求解.
根據(jù)勾股定理得到:
AD==,
AB==,
CD==5;
BC==,
∴四邊形ABCD的周長是
AB+BC+CD+AD=++5+≈18.8.
連接AC,BD,則AC==5.
∵(2)2+()2=52,52+52=(5)2,
∴AB2+BC2=AC2,AC2+CD2=AD2.
∴∠ABC和∠ACD是直角.
∴四邊形ABCD的面積=直角△ABC的面積+直角△ACD的面積=BC·AB+AC·CD=17.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2﹣ x+ 與x軸交于A,B兩點(A點在B點的左側(cè)),與y軸交于點C,已知點D(0,﹣ ).
(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動點,當(dāng)△PBD面積最大時,過P作PQ⊥x軸于點Q,M為拋物線對稱軸上的一動點,過M作y軸的垂線,垂足為點N,連接PM,NQ,求PM+MN+NQ的最小值;
(3)在(2)問的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△BPQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過程中,設(shè)直線P′B′與x軸交于點E.則是否存在這樣的點E,使得△B′EQ″為等腰三角形?若存在,求此時OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一塊直角三角形的綠地,量得直角邊BC為6cm,AC為8cm,現(xiàn)在要將原綠地擴(kuò)充后成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后的等腰三角形綠地的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑BC=7,延長CB到A,割線AED交半圓于點E,D,且AE=ED=3,則AB的長為( )
A.
B.2
C.
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y= x,過點M(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1 , 過點N1作直線l的垂線交x軸于點M2 , …;按此作法繼續(xù)下去,則點M8坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將一副三角板中的兩塊直角三角尺的直角頂點C按如圖所示的方式疊放在一起,當(dāng)∠ACE<180°且點E在直線AC的上方時,他發(fā)現(xiàn)若∠ACE=_____,則三角板BCE有一條邊與斜邊AD平行.(寫出所有可能情況)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com