【題目】如圖,點(diǎn)E是菱形ABCD對(duì)角線(xiàn)CA的延長(zhǎng)線(xiàn)上任意一點(diǎn),以線(xiàn)段AE為邊作一個(gè)菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD.
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG= ,求GD的長(zhǎng).
【答案】
(1)證明:∵菱形AEFG∽菱形ABCD,
∴∠EAG=∠BAD,
∴∠EAG+∠GAB=∠BAD+∠GAB,
∴∠EAB=∠GAD,
∵AE=AG,AB=AD,
∴△AEB≌△AGD,
∴EB=GD;
(2)解:連接BD交AC于點(diǎn)P,則BP⊥AC,
∵∠DAB=60°,
∴∠PAB=30°,
∴BP= AB=1,
AP= = ,AE=AG= ,
∴EP=2 ,
∴EB= = = ,
∴GD= .
【解析】(1)利用相似多邊形的對(duì)應(yīng)角相等和菱形的四邊相等證得三角形全等后即可證得兩條線(xiàn)段相等;(2)連接BD交AC于點(diǎn)P,則BP⊥AC,根據(jù)∠DAB=60°得到BP= AB=1,然后求得EP=2 ,最后利用勾股定理求得EB的長(zhǎng)即可求得線(xiàn)段GD的長(zhǎng)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)菱形的性質(zhì)的理解,了解菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是( )
A.110°
B.80°
C.40°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,ABCD為長(zhǎng)方形,其中點(diǎn)A、C坐標(biāo)分別為(﹣4,2)、(1,﹣4),且AD∥x軸,交y軸于M點(diǎn),AB交x軸于N.
(1)求B、D兩點(diǎn)坐標(biāo)和長(zhǎng)方形ABCD的面積;
(2)一動(dòng)點(diǎn)P從A出發(fā)(不與A點(diǎn)重合),以個(gè)單位/秒的速度沿AB向B點(diǎn)運(yùn)動(dòng),在P點(diǎn)運(yùn)動(dòng)過(guò)程中,連接MP、OP,請(qǐng)直接寫(xiě)出∠AMP、∠MPO、∠PON之間的數(shù)量關(guān)系;
(3)是否存在某一時(shí)刻t,使三角形AMP的面積等于長(zhǎng)方形面積的?若存在,求t的值并求此時(shí)點(diǎn)P的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題提出】 學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿(mǎn)足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類(lèi),可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF. 第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF. 第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)
(4)∠B還要滿(mǎn)足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市啟動(dòng)了第二屆“美麗港城,美在閱讀”全民閱讀活動(dòng),為了解市民每天的閱讀時(shí)間情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:
閱讀時(shí)間 | 0≤x<30 | 30≤x<60 | 60≤x<90 | x≥90 | 合計(jì) |
頻數(shù) | 450 | 400 | 50 | ||
頻率 | 0.4 | 0.1 | 1 |
(1)補(bǔ)全表格;
(2)將每天閱讀時(shí)間不低于60min的市民稱(chēng)為“閱讀愛(ài)好者”,若我市約有500萬(wàn)人,請(qǐng)估計(jì)我市能稱(chēng)為“閱讀愛(ài)好者”的市民約有多少萬(wàn)人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問(wèn)題:
(1)[﹣4.5]= , <3.5>= .
(2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是 .
(3)已知x,y滿(mǎn)足方程組 ,求x,y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com