【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗(yàn)時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時(shí)間t(h)的變化圖象如圖所示,根據(jù)圖象回答:
(1)服藥后幾時(shí)血液中含藥量最高?每毫升血液中含多少微克?
(2)在服藥幾時(shí)內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時(shí)后,每毫升血液中含藥量逐漸下降?
(3)服藥后14 h時(shí),每毫升血液中含藥量是多少微克?
(4)如果每毫升血液中含藥量為4微克及以上時(shí),治療疾病有效,那么有效時(shí)間為幾時(shí)?
【答案】(1)服藥后2h血液中含藥量最高,每毫升血液中含6μg.;(2)在服藥2h內(nèi),每毫升血液中含藥量逐漸升高,在服藥2h后,每毫升血液中含藥量逐漸下降;(3)2μg;(4)h
【解析】
仔細(xì)觀察圖象即可得到(1)、(2)、(3)的結(jié)果,找到每毫升血液中含藥量為4微克及以上時(shí)所對應(yīng)的時(shí)間段,有效時(shí)間為兩者之差,即可得出(4)的答案.
(1)由圖象可知,服藥后2h血液中含藥量最高,達(dá)到每毫升血液中含藥6μg,
(2)由圖象可知,在服藥2h之內(nèi),血液中含藥量逐漸升高;在2h之后,血液中含藥量逐漸衰減;
(3)由圖象可知,服藥后14h,每毫升血液中含藥量是2μg;
(4)每毫升血液中含藥量為4μg及以上時(shí),所處的時(shí)間段為h~8h,
故有效時(shí)間為:8=(h).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月12日是我國第11個全國防災(zāi)減災(zāi)日,重慶某中學(xué)為普及推廣全民防災(zāi)減災(zāi)知識和避災(zāi)自救技能,開展了“提高災(zāi)害防治能力,構(gòu)筑生命安全防線”知識競賽活動.初一、初二年級各500人,為了調(diào)查競賽情況,學(xué)校進(jìn)行了抽樣調(diào)查,過程如下,請根據(jù)表格回答問題.
收集數(shù)據(jù):
從初一、初二年級各抽取20名同學(xué)的測試成績(單位:分),記錄如下:
初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90
初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89
整理數(shù)據(jù):
表一
分?jǐn)?shù)段 | ||||
初一人數(shù) | 1 | 12 | ||
初二人數(shù) | 2 | 2 | 4 | 12 |
分析數(shù)據(jù):
表二
種類 | 平均數(shù) | 中位數(shù) | 眾數(shù) | |
初一 | 90.5 | 91.5 | 84.75 | |
初二 | 90.5 | 100 | 123.05 |
得出結(jié)論:
(1)在表中:_______,_______,_______,_______;
(2)得分情況較穩(wěn)定的是___________(填初一或初二);
(3)估計(jì)該校初一、初二年級學(xué)生本次測試成績中可以得滿分的人數(shù)共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一批貨物要運(yùn)往某地,貨主準(zhǔn)備租用汽車運(yùn)輸公司的甲、乙兩種貨車,已知過去兩次租用這種貨車的情況如下表:
現(xiàn)租用該公司3輛甲種貨車及5輛乙種貨車一次剛好運(yùn)完這批貨,如果按每噸付運(yùn)費(fèi)30元計(jì)算,貨主應(yīng)付運(yùn)費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)C作CF∥AB,在CF上取一點(diǎn)E,使DE=CD,連接AE,對于下列結(jié)論:①AD=DC;②△CBA∽△CDE;③ = ;④AE為⊙O的切線,一定正確的結(jié)論選項(xiàng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組開展了一次活動,過程如下:如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將三角板中含45°角的頂點(diǎn)放在A上,斜邊從AB邊開始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
(1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2 . 同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請你從中任選一種方法進(jìn)行證明.
(3)小敏繼續(xù)旋轉(zhuǎn)三角板,請你繼續(xù)研究:當(dāng)135°<α<180°時(shí)(如圖4),等量BD2+CE2=DE2是否仍然成立?請作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱.
(1)求直線的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)是軸上的一個動點(diǎn),過點(diǎn)作軸的平行線,交直線于點(diǎn),交直線于點(diǎn),連接.
①若,求點(diǎn)的坐標(biāo);
②若的面積為,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖甲,,與的關(guān)系是什么?并寫出推理過程;
(2)如圖乙,,直接寫出與的數(shù)量關(guān)系_______________________;
(3)如圖丙,,直接寫出與的數(shù)量關(guān)系_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,點(diǎn)M是BC的中點(diǎn).點(diǎn)P從點(diǎn)M出發(fā)沿MB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,到達(dá)點(diǎn)B后立刻以原速度沿BM返回;點(diǎn)Q從點(diǎn)M出發(fā)以每秒1個單位長的速度在射線MC上勻速運(yùn)動.在點(diǎn)P,Q的運(yùn)動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點(diǎn)P,Q同時(shí)出發(fā),當(dāng)點(diǎn)P返回到點(diǎn)M時(shí)停止運(yùn)動,點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動的時(shí)間是t秒(t>0).
(1)設(shè)PQ的長為y,在點(diǎn)P從點(diǎn)M向點(diǎn)B運(yùn)動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍).
(2)當(dāng)BP=1時(shí),求△EPQ與梯形ABCD重疊部分的面積.
(3)隨著時(shí)間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時(shí)刻會達(dá)到最大值,請回答:該最大值能否持續(xù)一個時(shí)段?若能,直接寫出t的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在筆直的公路上行駛,在兩次轉(zhuǎn)彎后,仍在原來的方向上平行前進(jìn),那么這兩次轉(zhuǎn)彎的角度可以是( )
A. 先右轉(zhuǎn)80o,再左轉(zhuǎn)100 oB. 先左轉(zhuǎn)80 o ,再右轉(zhuǎn)80 o
C. 先左轉(zhuǎn)80 o ,再左轉(zhuǎn)100 oD. 先右轉(zhuǎn)80 o,再右轉(zhuǎn)80
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com