【題目】“推進全科閱讀,培育時代新人”.某學(xué)校為了更好地開展學(xué)生讀書活動,隨機調(diào)查了八年級50名學(xué)生最近一周的讀書時間,統(tǒng)計數(shù)據(jù)如下表:
時間(小時) | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 5 | 8 | 12 | 15 | 10 |
(1)寫出這50名學(xué)生讀書時間的眾數(shù)、中位數(shù)、平均數(shù);
(2)根據(jù)上述表格補全下面的條形統(tǒng)計圖.
(3)學(xué)校欲從這50名學(xué)生中,隨機抽取1名學(xué)生參加上級部門組織的讀書活動,其中被抽到學(xué)生的讀書時間不少于9小時的概率是多少?
【答案】(1)眾數(shù)是9;中位數(shù)是8.5;平均數(shù)是8.34;(2)補圖見解析;(3)
【解析】(1)先根據(jù)表格提示的數(shù)據(jù)得出50名學(xué)生讀書的時間,然后除以50即可求出平均數(shù);在這組樣本數(shù)據(jù)中,9出現(xiàn)的次數(shù)最多,所以求出了眾數(shù);將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)是8和9,從而求出中位數(shù)是8.5;
(2)根據(jù)題意直接補全圖形即可.
(3)從表格中得知在50名學(xué)生中,讀書時間不少于9小時的有25人再除以50即可得出結(jié)論.
(1)觀察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:
(6×5+7×8+8×12+9×15+10×10)÷50=8.34,
故這組樣本數(shù)據(jù)的平均數(shù)為8.34;
∵這組樣本數(shù)據(jù)中,9出現(xiàn)了15次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是9;
∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)是8和9,
∴這組數(shù)據(jù)的中位數(shù)為(8+9)=8.5;
(2)補全圖形如圖所示,
(3)∵讀書時間是9小時的有15人,讀書時間是10小時的有10人,
∴讀書時間不少于9小時的有15+10=25人,
∴被抽到學(xué)生的讀書時間不少于9小時的概率是
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=20cm,M是線段AB的中點,C是線段AB延長線上的點,AC:BC=3:1,點D是線段BA延長線上的點,AD=AB.求:
(1)線段BC的長;
(2)線段DC的長;
(3)線段MD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個平面圖形.
(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點D移到BA的延長線上時,點C也在BA的延長線上;當(dāng)點C移到AB的延長線上時,點A、C、D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在△ABC的外側(cè)分別以AB,AC為腰作了兩個等腰直角三角形ABD,ACE,分別取BD,CE,BC的中點M,N,G,連接GM,GN.小明發(fā)現(xiàn)了:線段GM與GN的數(shù)量關(guān)系是__________;位置關(guān)系是__________.
(2)類比思考:
如圖②,小明在此基礎(chǔ)上進行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中AB>AC,其它條件不變,小明發(fā)現(xiàn)的上述結(jié)論還成立嗎?請說明理由.
(3)深入研究:
如圖③,小明在(2)的基礎(chǔ)上,又作了進一步的探究.向△ABC的內(nèi)側(cè)分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷△GMN的形狀,并給與證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】環(huán)境空氣質(zhì)量問題已經(jīng)成為人們?nèi)粘I钏P(guān)心的重要問題,我國新修訂的《環(huán)境空氣質(zhì)量標準》中增加了PM2.5檢測指標,“PM2.5”是指大氣中危害健康的直徑小于或等于2.5微米的顆粒物,2.5微米即0.0000025米.用科學(xué)記數(shù)法表示0.0000025為( )
A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明發(fā)現(xiàn)相機快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com