【題目】下表數(shù)據(jù)是科研小組在某地區(qū)根據(jù)調(diào)查獲取的:“距離地面的高度(千米)與此處的溫度(攝氏度)”的關(guān)系。
距離地面高度/千米 | 0 | 1 | 2 | 3 | 4 | 5 |
溫度/攝氏度 | 20 | 14 | 8 | 2 | -4 | -10 |
根據(jù)上表,請(qǐng)你回答:
(1)上表中___________是自變量;_________________是因變量;
(2)如果用表示距離地面的高度(千米),表示溫度(攝氏度),請(qǐng)你寫出與的關(guān)系式____________________________________;
(3)請(qǐng)你利用(2)的結(jié)論,求該地區(qū):①距離地面6.2千米的高空溫度是多少?②當(dāng)高空某處溫度為-52度時(shí),該處的高度是多少?
【答案】(1)距離地面的高度,溫度;(2);(3)①距地面6.2千米高空溫度為;②該處高度為12千米
【解析】
(1)函數(shù)是指在一個(gè)變化過程中的兩個(gè)變量x、y,對(duì)于x的每一個(gè)值,y都有唯一的值和它相對(duì)應(yīng),此時(shí)x叫自變量,y叫x的函數(shù);
(2)根據(jù)表中數(shù)據(jù)的變化規(guī)律,找到溫度和高度之間的關(guān)系,列出關(guān)系式t=20-6h;
(3)①可直接從表中得到距離地面6.2千米的高空溫度;
②將t=-52代入解析式即可求出.
(1)上表反映了溫度和距地面高度之間的關(guān)系,高度是自變量,溫度是因變量.
(2)由表可知,每上升一千米,溫度降低6攝氏度,可得解析式為t=20-6h;
(3)①時(shí),
答:距地面6.2千米高空溫度為
②時(shí),
∴
答:該處高度為12千米。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)M在BA的延長線上,MD切⊙O于點(diǎn)D,過點(diǎn)B作BN⊥MD于點(diǎn)C,連接AD并延長,交BN于點(diǎn)N.
(1)求證:AB=BN;
(2)若⊙O半徑的長為3,cosB=,求MA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個(gè)產(chǎn)品銷售點(diǎn)在經(jīng)銷某著名特色小吃時(shí)發(fā)現(xiàn):如果每箱產(chǎn)品贏利10元,每天可銷售50箱,若每箱產(chǎn)品漲價(jià)1元,日銷量將減少2箱.
(1)現(xiàn)該銷售點(diǎn)為使每天贏利600元,同時(shí)又要顧客得到實(shí)惠,那么每箱產(chǎn)品應(yīng)漲價(jià)多少元?
(2)若該銷售點(diǎn)單純從經(jīng)濟(jì)角度考慮,每箱產(chǎn)品應(yīng)漲價(jià)多少元?才能使每天的盈利最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)D重合),點(diǎn)Q是邊CD上一點(diǎn),聯(lián)結(jié)PB、PQ,且∠PBC=∠BPQ.
(1)當(dāng)QD=QC時(shí),求∠ABP的正切值;
(2)設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)解析式;
(3)聯(lián)結(jié)BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個(gè)角,并求出它的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程.
(1)求證:無論k取何值,該方程總有實(shí)數(shù)根;
(2)若等腰的一邊長,另兩邊b、c恰好是該方程的兩個(gè)根,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中, , ,△CDE中, ,CD=DE=5,
連接接BE,取BE中點(diǎn)F,連接AF、DF.
(1)如圖1,若三點(diǎn)共線, 為中點(diǎn).
①直接指出與的關(guān)系______________;
②直接指出的長度______________;
(2)將圖(1)中的△CDE繞點(diǎn)逆時(shí)針旋轉(zhuǎn)(如圖2, ),試確定與的關(guān)系,并說明理由;
(3)在(2)中,若,請(qǐng)直接指出點(diǎn)所經(jīng)歷的路徑長.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校對(duì)學(xué)生暑假參加志愿服務(wù)的時(shí)間進(jìn)行抽樣調(diào)查,將收集的數(shù)據(jù)分成、、、、五組進(jìn)行整理,并繪制成如下的統(tǒng)計(jì)圖表(圖中信息不完整).
分組統(tǒng)計(jì)表
組別 | 志愿服務(wù)時(shí)間(時(shí)) | 人數(shù) |
A | ||
B | 40 | |
C | ||
D | ||
E | 16 |
請(qǐng)結(jié)合以上信息解答下列問題
(1)求、、的值;
(2)補(bǔ)全“人數(shù)分組統(tǒng)計(jì)圖①中組的人數(shù)和圖②組和組的比例值”;
(3)若全校學(xué)生人數(shù)為800人,請(qǐng)估計(jì)全校參加志愿服務(wù)時(shí)間在的范圍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O(0,0),點(diǎn)B(0,1)是第一個(gè)正方形OBB1C的兩個(gè)頂點(diǎn),以它的對(duì)角線OB1為一邊作第二個(gè)正方形OB1B2C1,以正方形OB1B2C1的對(duì)角線OB2為一邊作第三個(gè)正方形OB2B3C2,再以正方形OB2B3C2的對(duì)角線OB3為一邊作第四個(gè)正方形OB3B4C3…以此規(guī)律作下去,點(diǎn)B2014的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)10個(gè)班師生舉行畢業(yè)文藝匯演,每班2個(gè)節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級(jí)統(tǒng)計(jì)后發(fā)現(xiàn)歌唱類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個(gè).
(1)九年級(jí)師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個(gè)?
(2)該校七、八年級(jí)師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個(gè)節(jié)目的演出平均用時(shí)分別是5分鐘、6分鐘、8分鐘,預(yù)計(jì)所有演出節(jié)目交接用時(shí)共花15分鐘.若從20:00開始,22:30之前演出結(jié)束,問參與的小品類節(jié)目最多能有多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com