【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個(gè)定點(diǎn),點(diǎn)B,D分別在ANAM上,連接BD

【發(fā)現(xiàn)】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請(qǐng)判斷CBD的形狀,并證明你的結(jié)論;

【應(yīng)用】

3)如圖3,已知∠EOF=120°OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且PGH為等邊三角形,則滿足上述條件的PGH的個(gè)數(shù)一共有   .(只填序號(hào))

2個(gè)3個(gè)4個(gè)4個(gè)以上

【答案】160,等邊;2)等邊三角形,證明見解析(3.

【解析】試題分析:1)利用四邊形的內(nèi)角和即可得出∠BCD的度數(shù),再利用角平分線的性質(zhì)定理即可得出CB,即可得出結(jié)論;

2)先判斷出∠CDE=ABC,進(jìn)而得出CDE≌△CFBAAS),得出CD=CB,再利用四邊形的內(nèi)角和即可得出∠BCD=60°即可得出結(jié)論;

3)先判斷出∠POE=POF=60°,先構(gòu)造出等邊三角形,找出特點(diǎn),即可得出結(jié)論.

試題解析:(1)如圖1,連接BD

∵∠ABC=ADC=90°,MAN=120°

根據(jù)四邊形的內(nèi)角和得,∠BCD=360°-ABC+ADC+MAN=60°,

AC是∠MAN的平分線,CDAMCBAN,

CD=CB,(角平分線的性質(zhì)定理),

∴△BCD是等邊三角形;

故答案為:60,等邊;

2)如圖2,同(1)得出,∠BCD=60°(根據(jù)三角形的內(nèi)角和定理),

過點(diǎn)CCEAME,CFANF,

AC是∠MAN的平分線,

CE=CF

∵∠ABC+ADC=180°,ADC+CDE=180°

∴∠CDE=ABC,

CDECFB中,

,

∴△CDE≌△CFBAAS),

CD=CB

∵∠BCD=60°,

∴△CBD是等邊三角形;

3)如圖3,

OP平分∠EOF,EOF=120°

∴∠POE=POF=60°,在OE上截取OG'=OP=1,連接PG',

∴△G'OP是等邊三角形,此時(shí)點(diǎn)H'和點(diǎn)O重合,

同理:OPH是等邊三角形,此時(shí)點(diǎn)G和點(diǎn)O重合,

將等邊PHG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)到等邊PG'H',在旋轉(zhuǎn)的過程中,

PG,PH分別和OEOF相交(如圖中G',H')和點(diǎn)P圍成的三角形全部是等邊三角形,(旋轉(zhuǎn)角的范圍為(60°包括60°),

所以有無數(shù)個(gè);

理由:同(2)的方法.

故答案為④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtOAB,∠AOB90°,斜邊ABy軸正半軸于點(diǎn)C,若A3,1),則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸、軸分別相交于點(diǎn)、點(diǎn),,若將沿直線折疊,使點(diǎn)與點(diǎn)重合,折痕軸交于點(diǎn),與交于點(diǎn)

1)求的值;

2)求點(diǎn)的坐標(biāo);

3)求直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進(jìn)行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作,只需10天完成.

1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

2)若甲工程隊(duì)每天的工程費(fèi)用是4萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,請(qǐng)你設(shè)計(jì)一種方案,既能按時(shí)完工,又能使工程費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,都是等邊三角形,且點(diǎn)上.

1)求證:

2)直接寫出之間的關(guān)系;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫度與我們的生活息息相關(guān),如圖是一個(gè)溫度計(jì)實(shí)物示意圖,左邊的刻度是攝氏溫度(),右邊的刻度是華氏溫度().設(shè)攝氏溫度為x(℃)華氏溫度為y(℉),則yx的一次函數(shù),通過觀察我們發(fā)現(xiàn),溫度計(jì)上的攝氏溫度為0℃時(shí),華氏溫度為32℉;攝氏溫度為﹣20℃時(shí),華氏溫度為﹣4℉

請(qǐng)根據(jù)以上信息,解答下列問題

(1)仔細(xì)觀察圖中數(shù)據(jù),試求出yx的函數(shù)關(guān)系式;

(2)當(dāng)攝氏溫度為﹣5℃時(shí),華氏溫度為多少?

(3)當(dāng)華氏溫度為59℉時(shí),攝氏溫度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,在AC邊上取兩點(diǎn)MN,使∠MBN30°.若AMm,MNx,CNn,則以x,mn為邊長(zhǎng)的三角形的形狀為( 。

A. 銳角三角形 B. 直角三角形

C. 鈍角三角形 D. xm,n的值而定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】精準(zhǔn)扶貧,助力蘋果產(chǎn)業(yè)大發(fā)展.甲、乙兩超市為響應(yīng)黨中央將消除貧困和實(shí)現(xiàn)共同富裕作為重要的奮斗目標(biāo),到種植蘋果的貧困山區(qū)分別用元以相同的進(jìn)價(jià)購(gòu)進(jìn)質(zhì)量相同的蘋果.甲超市的銷售方案:將蘋果按大小分類包裝銷售,其中大蘋果千克,以進(jìn)價(jià)的倍價(jià)格銷售,剩下的小蘋果以高于進(jìn)價(jià)的銷售.乙超市的銷售方案:不將蘋果按大小分類,直接包裝銷售,價(jià)格按甲超市大、小兩種蘋果售價(jià)的平均數(shù)定價(jià).若兩超市將蘋果全部售完,其中甲超市獲利元(包含人工工資和運(yùn)費(fèi)).

1)蘋果進(jìn)價(jià)為每千克多少元?

2)乙超市獲利多少元?并比較哪種銷售方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長(zhǎng)方形紙片放入平面直角坐標(biāo)系中,使分別落在軸的的正半軸上,連接,且,

1)求點(diǎn)的坐標(biāo);

2)將紙片折疊,使點(diǎn)與點(diǎn)重合(折痕為),求折疊后紙片重疊部分的面積;

3)求所在直線的函數(shù)表達(dá)式,并求出對(duì)角線與折痕交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案