【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個(gè)定點(diǎn),點(diǎn)B,D分別在AN,AM上,連接BD.
【發(fā)現(xiàn)】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請(qǐng)判斷△CBD的形狀,并證明你的結(jié)論;
【應(yīng)用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個(gè)數(shù)一共有 .(只填序號(hào))
①2個(gè)②3個(gè)③4個(gè)④4個(gè)以上
【答案】(1)60,等邊;(2)等邊三角形,證明見解析(3)④.
【解析】試題分析:(1)利用四邊形的內(nèi)角和即可得出∠BCD的度數(shù),再利用角平分線的性質(zhì)定理即可得出CB,即可得出結(jié)論;
(2)先判斷出∠CDE=∠ABC,進(jìn)而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四邊形的內(nèi)角和即可得出∠BCD=60°即可得出結(jié)論;
(3)先判斷出∠POE=∠POF=60°,先構(gòu)造出等邊三角形,找出特點(diǎn),即可得出結(jié)論.
試題解析:(1)如圖1,連接BD,
∵∠ABC=∠ADC=90°,∠MAN=120°,
根據(jù)四邊形的內(nèi)角和得,∠BCD=360°-(∠ABC+∠ADC+∠MAN)=60°,
∵AC是∠MAN的平分線,CD⊥AM.CB⊥AN,
∴CD=CB,(角平分線的性質(zhì)定理),
∴△BCD是等邊三角形;
故答案為:60,等邊;
(2)如圖2,同(1)得出,∠BCD=60°(根據(jù)三角形的內(nèi)角和定理),
過點(diǎn)C作CE⊥AM于E,CF⊥AN于F,
∵AC是∠MAN的平分線,
∴CE=CF,
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,
在△CDE和△CFB中,
,
∴△CDE≌△CFB(AAS),
∴CD=CB,
∵∠BCD=60°,
∴△CBD是等邊三角形;
(3)如圖3,
∵OP平分∠EOF,∠EOF=120°,
∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,連接PG',
∴△G'OP是等邊三角形,此時(shí)點(diǎn)H'和點(diǎn)O重合,
同理:△OPH是等邊三角形,此時(shí)點(diǎn)G和點(diǎn)O重合,
將等邊△PHG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)到等邊△PG'H',在旋轉(zhuǎn)的過程中,
邊PG,PH分別和OE,OF相交(如圖中G',H')和點(diǎn)P圍成的三角形全部是等邊三角形,(旋轉(zhuǎn)角的范圍為(0°到60°包括0°和60°),
所以有無數(shù)個(gè);
理由:同(2)的方法.
故答案為④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△OAB,∠AOB=90°,斜邊AB交y軸正半軸于點(diǎn)C,若A(3,1),則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸、軸分別相交于點(diǎn)、點(diǎn),,若將沿直線折疊,使點(diǎn)與點(diǎn)重合,折痕與軸交于點(diǎn),與交于點(diǎn).
(1)求的值;
(2)求點(diǎn)的坐標(biāo);
(3)求直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進(jìn)行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作,只需10天完成.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若甲工程隊(duì)每天的工程費(fèi)用是4萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,請(qǐng)你設(shè)計(jì)一種方案,既能按時(shí)完工,又能使工程費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫度與我們的生活息息相關(guān),如圖是一個(gè)溫度計(jì)實(shí)物示意圖,左邊的刻度是攝氏溫度(℃),右邊的刻度是華氏溫度(℉).設(shè)攝氏溫度為x(℃)華氏溫度為y(℉),則y是x的一次函數(shù),通過觀察我們發(fā)現(xiàn),溫度計(jì)上的攝氏溫度為0℃時(shí),華氏溫度為32℉;攝氏溫度為﹣20℃時(shí),華氏溫度為﹣4℉
請(qǐng)根據(jù)以上信息,解答下列問題
(1)仔細(xì)觀察圖中數(shù)據(jù),試求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)攝氏溫度為﹣5℃時(shí),華氏溫度為多少?
(3)當(dāng)華氏溫度為59℉時(shí),攝氏溫度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,在AC邊上取兩點(diǎn)M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,則以x,m,n為邊長(zhǎng)的三角形的形狀為( 。
A. 銳角三角形 B. 直角三角形
C. 鈍角三角形 D. 隨x,m,n的值而定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】精準(zhǔn)扶貧,助力蘋果產(chǎn)業(yè)大發(fā)展.甲、乙兩超市為響應(yīng)黨中央將消除貧困和實(shí)現(xiàn)共同富裕作為重要的奮斗目標(biāo),到種植蘋果的貧困山區(qū)分別用元以相同的進(jìn)價(jià)購(gòu)進(jìn)質(zhì)量相同的蘋果.甲超市的銷售方案:將蘋果按大小分類包裝銷售,其中大蘋果千克,以進(jìn)價(jià)的倍價(jià)格銷售,剩下的小蘋果以高于進(jìn)價(jià)的銷售.乙超市的銷售方案:不將蘋果按大小分類,直接包裝銷售,價(jià)格按甲超市大、小兩種蘋果售價(jià)的平均數(shù)定價(jià).若兩超市將蘋果全部售完,其中甲超市獲利元(包含人工工資和運(yùn)費(fèi)).
(1)蘋果進(jìn)價(jià)為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長(zhǎng)方形紙片放入平面直角坐標(biāo)系中,使分別落在軸的的正半軸上,連接,且,.
(1)求點(diǎn)的坐標(biāo);
(2)將紙片折疊,使點(diǎn)與點(diǎn)重合(折痕為),求折疊后紙片重疊部分的面積;
(3)求所在直線的函數(shù)表達(dá)式,并求出對(duì)角線與折痕交點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com