【題目】如圖,拋物線yax2+bx1a≠0)交x軸于AB1,0)兩點(diǎn),交y軸于點(diǎn)C,一次函數(shù)yx+3的圖象交坐標(biāo)軸于A,D兩點(diǎn),E為直線AD上一點(diǎn),作EFx軸,交拋物線于點(diǎn)F

1)求拋物線的解析式;

2)若點(diǎn)F位于直線AD的下方,請(qǐng)問線段EF是否有最大值?若有,求出最大值并求出點(diǎn)E的坐標(biāo);若沒有,請(qǐng)說明理由.

【答案】1yx 2+x1;(2EF的長(zhǎng)度有最大值,最大值為,此時(shí)點(diǎn)E的坐標(biāo)為(,.

【解析】

1)求出點(diǎn)A的坐標(biāo),再根據(jù)待定系數(shù)法即可求出拋物線的解析式;

2)設(shè)點(diǎn)E的坐標(biāo)為(m,m+3),則Fm,m 2+m1),可得,即可求出EF的最大值并求出點(diǎn)E的坐標(biāo).

1)將y0代入yx+3,得x=﹣3

A(﹣3,0).

∵拋物線yax2+bx1x軸于A(﹣30),B10)兩點(diǎn),

,解得:

拋物線的解析式為yx 2+x1

2)設(shè)點(diǎn)E的坐標(biāo)為(m,m+3),則Fm,m 2+m1

EF=(m+3)﹣( m 2+m1

m 2+,

∴當(dāng)m=時(shí),EF的長(zhǎng)度有最大值,最大值為,此時(shí)點(diǎn)E的坐標(biāo)為(,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE分別是AB、AC的中點(diǎn),BE2DE,過點(diǎn)CCFBEDE的延長(zhǎng)線于F,連接CD

1)求證:四邊形BCFE是菱形;

2)在不添加任何輔助線和字母的情況下,請(qǐng)直接寫出圖中與△BEC面積相等的所有三角形(不包括△BEC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 中,AD6,點(diǎn) E 是對(duì)角線 AC 上一點(diǎn),連接 DE,過點(diǎn) E EF ED,交 AB 于點(diǎn) F,連接 DF,交 AC 于點(diǎn) G,將EFG 沿 EF 翻折,得到EFM,連接DM,交 EF 于點(diǎn) N,若點(diǎn) F AB 邊的中點(diǎn),則 EDM 的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點(diǎn),A點(diǎn)的坐標(biāo)為B點(diǎn)的坐標(biāo)為,連接,過B軸,垂足為C

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)在射線上是否存在一點(diǎn)D,使得是直角三角形,求出所有可能的D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,BAC+EAD=180°,ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE,CD,F(xiàn)BE的中點(diǎn),連接AF.

(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;

(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yx軸交于A,CAC的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)FOB中點(diǎn).

1)求直線BC的函數(shù)表達(dá)式;

2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)Ex軸上一動(dòng)點(diǎn),當(dāng)BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FEDE|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1CD交于點(diǎn)O,則四邊形AB1OD的面積是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長(zhǎng)為1的等邊的邊上一點(diǎn),作,延長(zhǎng)線上一點(diǎn),當(dāng)時(shí),連接邊于,則的長(zhǎng)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案