【題目】直線 y=kx+b 與直線交點的縱坐標(biāo)為 5,而與直線 y=3x﹣9 的交點的橫 坐標(biāo)也是 5,則直線 y=kx+b 與兩坐標(biāo)軸圍成的三角形面積為(

A. B. C. 1 D.

【答案】D

【解析】

先確定直線y=kx+b與直線y= x+3交點坐標(biāo),直線y=kx+b與直線y=3x-9交點坐標(biāo),再利用待定系數(shù)法確定直線y=kx+b的解析式,然后求出它與坐標(biāo)軸的交點坐標(biāo),再利用三角形面積公式求解.

解答:解:把y=5代入y= x+3x+3=5,解得x=4,即直線y=kx+b與直線y=x+3交點的坐標(biāo)為(4,5);
x=5代入y=3x-9y=15-9=6,即直線y=kx+b與直線y=3x-9交點的坐標(biāo)為(5,6);
把(4,5)和(5,6)代入y=kx+b

解得

所以y=x+1,
直線y=x+1x軸的交點坐標(biāo)為(-1,0),與y軸的交點坐標(biāo)為(0,1),
所以直線y=kx+b與兩坐標(biāo)軸圍成的三角形面積=×1×1=

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點O,CAB=500,C=600,求DAE和BOA的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖1,將n個邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上,設(shè)拋物線y=ax2+bx+c(a<0)過矩形頂點B、C.
(1)當(dāng)n=1時,如果a=﹣1,試求b的值;
(2)當(dāng)n=2時,如圖2,在矩形OABC上方作一邊長為1的正方形EFMN,使EF在線段CB上,如果M,N兩點也在拋物線上,求出此時拋物線的解析式;
(3)將矩形OABC繞點O順時針旋轉(zhuǎn),使得點B落到x軸的正半軸上,如果該拋物線同時經(jīng)過原點O. ①試求當(dāng)n=3時a的值;
②直接寫出a關(guān)于n的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若要使得圖中平面展開圖折疊成正方體后,相對面上的兩個數(shù)之和為5,求x+y+z的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖EAOB的平分線上一點,ECOAEDOB,垂足分別是CD

(1)請判斷EDC的形狀并說明理由;

(2)求證OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某花園護欄是用直徑為厘米的半圓形條鋼組制而成,且每增加一個半圓形條鋼,護欄長度就增加厘米.設(shè)半圓形條鋼的總個數(shù)為為正整數(shù)),護欄總長度為厘米.

(1)當(dāng),時,護欄總長度________厘米;

(2)當(dāng)時,用含的代數(shù)式表示護欄總長度(結(jié)果要化簡);

(3)在第(2)題的條件下,若要使護欄總長度保持不變,而把改為50,就要共用個半圓形條鋼,請求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援雅安災(zāi)區(qū),某學(xué)校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價為20元,B型學(xué)習(xí)用品的單價為30元.

(1)若購買這批學(xué)習(xí)用品用了26000元,則購買A,B兩種學(xué)習(xí)用品各多少件?

(2)若購買這批學(xué)習(xí)用品的錢不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDEC中,ABDE.若添加條件后使得ABC≌△DEC,則在下列條件中,不能添加的是(  )

A. BCEC,BE B. BCEC,ACDC

C. BE,AD D. BCECAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PECD相交于點O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長.

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH,再利用等量代換得到PE=DH.

(2) 設(shè)DP=x RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°DOP=∠EOH,

∴△DOP≌△EOH,

OP=OH,

PO+OE=OH+OD,

PE=DH.

2)解:設(shè)DP=x,則EH=x,BH=10﹣x,

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進價分別為多少元?

(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?

查看答案和解析>>

同步練習(xí)冊答案