【題目】如圖,已知點A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點O對稱的圖形△COD;
(2)將△AOB繞點O按逆時針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點D的坐標(biāo)是 ,點F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延長線于E,∠1=∠2.
求證:AD平分∠BAC,填寫分析和證明中的空白.
證明:∵AD⊥BC,EF⊥BC(已知)
∴______∥______(______)
∴______=______(兩直線平行,內(nèi)錯角相等)
______=______(兩直線平行,同位角相等)
∵______(已知),∴______
即AD平分∠BAC(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結(jié)論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,先描出點,點.
(1)描出點關(guān)于軸的對稱點的位置,寫出的坐標(biāo) ;
(2)用尺規(guī)在軸上找一點,使的值最。ūA糇鲌D痕跡);
(3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等邊.
(1)如圖(1),若,現(xiàn)有兩點、分別從點、點同時出發(fā),沿三角形的邊順時針運動,已知點的速度為,點的速度為.當(dāng)點第一次到達(dá)點時,、同時停止運動.點,運動______秒后,為等腰三角形.
(2)如圖,點位于等邊的內(nèi)部,且.將繞點順時針旋轉(zhuǎn),點的對應(yīng)點為點.
①依題意,補全圖形;
②若,,求與的面積比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解決問題:
如圖等邊內(nèi)有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求的度數(shù).為了解決本題,我們可以將繞頂點A旋轉(zhuǎn)到處,此時≌,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個三角形中,從而求出______;
基本運用
請你利用第題的解答思想方法,解答下面問題:已知如圖,中,,,E、F為BC上的點且,求證:;
能力提升
如圖,在中,,,,點O為內(nèi)一點,連接AO,BO,CO,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1) 令P0(2,-3),O為坐標(biāo)原點,則d(O,P0)= ;
(2)已知O為坐標(biāo)原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點P所組成的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,弧AB=弧AE,BE分別交AD,AC于點F,G.
(1)求證:FA=FG;
(2)若BD=DO=2,求弧EC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個二次函數(shù)滿足以下條件:
①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x2,y2)(點B在點A的右側(cè));
②對稱軸是x=3;
③該函數(shù)有最小值是﹣2.
(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;
(2)將該函數(shù)圖象x>x2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com