精英家教網(wǎng)已知等邊△OAB的邊長為a,以AB邊上的高OA1為邊,按逆時針方向作等邊△OA1B1,A1B1與OB相交于點A2
(1)求線段OA2的長;
(2)若再以O(shè)A2為邊,按逆時針方向作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進行下去,得到△OA3B3,△OA4B4,…△OAnBn(如圖).求△OA6B6的周長.
分析:在等邊三角形中,由勾股定理可求得其一邊上的高與邊長的關(guān)系,根據(jù)圖形的變化規(guī)律即可求解.
解答:解:(1)OA2=
3
2
OA1=
3
2
×(
3
2
OA)(2分)
=
3
4
OA=
3
4
a(4分)

(2)依題意,OA1=
3
2
OA、OA2=
3
2
OA1=(
3
2
2OA
OA3=
3
2
OA2=(
3
2
3OA(6分)
以此類推,OA6=(
3
2
6OA=
27
64
OA=
27
64
a(8分)
即△OA6B6的周長=3OA6=
81
64
a.(9分)
點評:本題是找規(guī)律題,找到第n個等邊三角形的邊長與前一個等邊三角形的邊長的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等邊△OAB的邊長為1,以AB邊上的高OA1為邊,按逆時針方向作等邊△OA1B1,A1B1與OB相交于點A2.再以O(shè)A2為邊按逆時針方向作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進行下去,得到等邊△OA3B3,△OA4B4,…,△OAnBn,則等邊△OAnBn的邊長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等邊△OAB的邊長為a,以AB邊上的高OA1為邊,按逆時針方向作等邊△OA1B1,A1B1與OB相交于點A2
(1)求線段OA2的長;
(2)若再以O(shè)A2為邊按逆時針方向作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進行下去,得到△OA3B3,△OA4B4,…,△OAnBn(如圖).求△OA6B6的周長;
(3)直接寫出△OAnBn的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分5分)
已知等邊△OAB的邊長為a,以AB邊上的高OA1為邊,按逆時針方向作等邊
△OA1B1,A1B1與OB相交于點A2
(1)求線段OA2的長;
(2)若再以O(shè)A2為邊逆時針作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進
行下去,得到△OA3B3,△OA4B4,┉,△OAnBn,(如圖),求△OAnBn,的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆重慶市西南師大附中初二上學(xué)期數(shù)學(xué)期中試卷 題型:解答題

(本小題滿分5分)
已知等邊△OAB的邊長為a,以AB邊上的高OA1為邊,按逆時針方向作等邊
△OA1B1,A1B1與OB相交于點A2
(1)求線段OA2的長;
(2)若再以O(shè)A2為邊逆時針作等邊△OA2B2,A2B2與OB1相交于點A3,按此作法進
行下去,得到△OA3B3,△OA4B4,┉,△OAnBn,(如圖),求△OAnBn,的周長.

查看答案和解析>>

同步練習(xí)冊答案