【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點(diǎn)的坐標(biāo)。
(2)求出S△ABC
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標(biāo)。
【答案】(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3) A'(1,1),B'(6,4),C'(3,5).
【解析】試題分析:(1)觀察各點(diǎn)的位置,確定各點(diǎn)的坐標(biāo);
(2)由A,B,C各點(diǎn)所在的格線構(gòu)成一個(gè)矩形,用矩形的面積減去邊角的三個(gè)三角形的面積;
(3)按要求把各點(diǎn)進(jìn)行平移,然后順次連接各點(diǎn),得到△A′B′C′.
試題解析:解:(1)A(﹣1,﹣1),B(4,2),C(1,3);
(2)S△ABC=4×5-×2×4-×1×3-×3×5=7;
(3)所作圖形如圖所示:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角形板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是( )
A.16
B.12
C.8
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是隨機(jī)事件的是( )
A.畫一個(gè)三角形,使其內(nèi)角和為181°B.明天太陽從西邊升起
C.任取一個(gè)實(shí)數(shù),與其相反數(shù)之和為0D.外觀相同的10件產(chǎn)品中有兩件不合格產(chǎn)品,現(xiàn)從中抽取一件恰為合格品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】截止2015年底我國網(wǎng)民規(guī)模達(dá)到64900萬,將64900這個(gè)數(shù)用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)用方程解答下列問題
(1)一個(gè)角的余角比它的補(bǔ)角的還少15°,求這個(gè)角的度數(shù).
(2)幾個(gè)人共同搬運(yùn)一批貨物,如果每人搬運(yùn)8箱貨物,則剩下7箱貨物未搬運(yùn);如果每人搬運(yùn)12箱貨物,則缺13箱貨物,求參與搬運(yùn)貨物的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)一批電視機(jī)和洗衣機(jī),根據(jù)市場調(diào)查,決定電視機(jī)進(jìn)貨量不少于洗衣機(jī)進(jìn)貨量的一半.電視機(jī)與洗衣機(jī)的進(jìn)價(jià)和售價(jià)如下表:
類 別 | 電視機(jī) | 洗衣機(jī) |
進(jìn)價(jià)(元/臺) | 1 800 | 1 500 |
售價(jià)(元/臺) | 2 000 | 1 600 |
計(jì)劃購進(jìn)電視機(jī)和洗衣機(jī)共 100 臺,商店最多可籌集資金161 800 元.
(1)請你幫助商店算一算有多少種進(jìn)貨方案(不考慮除進(jìn)價(jià)之外的其他費(fèi)用);
(2)哪種進(jìn)貨方案待商店銷售購進(jìn)的電視機(jī)與洗衣機(jī)完畢后獲得的利潤最多?并求出最大的利潤(利潤=售價(jià)-進(jìn)價(jià)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1) ﹣ ﹣(π﹣1)0
(2)(﹣2a2b)2(6ab)÷(﹣3b2)
(3)(2x﹣1)(3x+2)﹣6x(x﹣2)
(4)(3x﹣y)2﹣(3x+2y)(3x﹣2y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一元二次方程5x2﹣1=4x化成一般形式后,它的二次項(xiàng)系數(shù)是5,則一次項(xiàng)系數(shù)是( )
A.﹣4B.4C.﹣1D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com