【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據(jù)調查結果繪制了如圖兩個不完整的統(tǒng)計圖.(校服型號以身高作為標準,共分為6種型號)
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學生,其中穿175型校服的學生有 名;
(2)在條形統(tǒng)計圖中,請把空缺部分補充完整;
(3)該班學生所穿校服型號的眾數(shù)為 型,中位數(shù)為 型.
【答案】(1)50人 10人 (3) 眾數(shù):165和170 中位數(shù):170
【解析】
試題(1)利用總人數(shù)=165型的人數(shù)÷對應的百分比,175型校服的學生=總人數(shù)×175型校服的學生的百分比求解即可;
(2)先求出185型的學生人數(shù),再補全統(tǒng)計圖即可,
(3)利用眾數(shù),中位數(shù)的定義求解即可.
試題解析:((1)15÷30%=50(名),50×20%=10(名),
答:該班共有50名學生,其中穿175型校服的學生有10名;
故答案為50,10.
(2)185型的學生人數(shù)為:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),
補全統(tǒng)計圖如圖所示;
(3)該班學生所穿校服型號的眾數(shù)為165,170,中位數(shù)為170.
故答案為165,170,170.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A1,A2,A3,…分別在x軸上,點B1,B2,B3,…分別在直線y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,則點A2019的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為的籬笆,一面利用墻(墻的最大可用長度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設花圃的一邊為.
則________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);
如果要圍成面積為的花圃,的長是多少?
將中表示矩形的面積的代數(shù)式通過配方,問:當等于多少時,能夠使矩形花圃面積最大,最大的面積為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高.
(1)求證:AC·BC=BE·CD;
(2)已知CD=6、AD=3、BD=8,求⊙O的直徑BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中(如圖).已知拋物線y=﹣x2+bx+c經過點A(﹣1,0)和點B(0,),頂點為C,點D在其對稱軸上且位于點C下方,將線段DC繞點D按順時針方向旋轉90°,點C落在拋物線上的點P處.
(1)求這條拋物線的表達式;
(2)求線段CD的長;
(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點M在y軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在探究三角形的內角和的小組活動中,小穎作如下輔助線:延長△ABC的邊BC到D,作CE∥AB,于是小穎得出三角形內角和的證明方法.
(1)求證:∠A+∠B+∠ACB=180°;
(2)如果CE平分∠ACD,AC=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為40和28,則△EDF的面積為( 。
A. 12 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于點E,垂足是D,F是BC上一點,EF平分∠AFC,EG⊥AF于點G.
(1)試判斷EC與EG,CF與GF是否相等;(直接寫出結果,不要求證明)
(2)求證:AG=BC;
(3)若AB=5,AF+BF=6,求EG的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com