【題目】如圖,內(nèi)一點,過點分別作的平行線,交的四邊于、、四點,若面積為6面積為4,則的面積為(  )

A.B.C.1D.2

【答案】C

【解析】

根據(jù)平行四邊形的性質(zhì)得到四個平行四邊形,且SAEP=SAGP,SPHC=SPFC,SABC= SADC,

利用面積比較的關(guān)系即可求出答案.

由題意知:四邊形BHPE、四邊形AEPG、四邊形HCFP、四邊形GPFD均為平行四邊形,

SAEP=SAGP,SPHC=SPFC,SABC= SADC

SABC=SAEP+S四邊形BHPE+SPHC-SAPC①,

SADC=SAGP+S四邊形GPFD+SPFC+SAPC②,
-①得,0=S四邊形BHPE-S四邊形GPFD+2SAPC,

2SAPC=6-4=2

SAPC=1.

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,已知,,D,,,如何求AD的長呢?

心怡同學(xué)靈活運用對稱知識,將圖形進行翻折變換,巧妙地解答了此題,

請按照她的思路,探究并解答下列問題:

1)分別以AB、AC為對稱軸,畫出、的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;

2)設(shè),利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,為原點,已知直線軸交于點,與軸交于點,點與點關(guān)于軸對稱,如圖①.

1)點的坐標為________,點的坐標為________,點的坐標為________,直線的解析式為________

2)點軸上的一個動點(點不與點重合),過點軸的垂線,交直線于點.交直線于點(圖②).

①如圖②,當點軸的正半軸上時,若的面積為,求點的坐標;

②連接,若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,∠ABC=60°,BC=8,點 D BC 邊的中點,點 E 是邊 AC上一點,過點 D ED 的垂線交邊 AC 于點 F,若 AC=7CF,且 DE 恰好平分△ABC 的周長,則△ABC 的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB8cmBC10cm.當小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時間x(分)之間的函數(shù)圖象如圖.

1A地與B地相距______km,甲的速度為______km/分;

2)求甲、乙兩人相遇時,乙行駛的路程;

3)當乙到達終點A時,甲還需多少分鐘到達終點B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當滿足時,兩個函數(shù)的圖象存在個公共點,則滿足的條件是( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案