【題目】如圖①,在平行四邊形OABC中,以O為圓心,OA為半徑的圓與BC相切于點(diǎn)B,與OC相交于點(diǎn)D.
(1)求∠OAB的度數(shù);
(2)如圖②,點(diǎn)E在⊙O上,連接CE與⊙O交于點(diǎn)F,若EF=AB,求∠COE的度數(shù).
【答案】(1) 45°;(2) 105°
【解析】
(1)連接OB,根據(jù)BC是圓的切線、四邊形OABC是平行四邊形得到△AOB是等腰直角三角形,即可求得答案;
(2)作OH⊥EC于點(diǎn)H,設(shè)EH=t,根據(jù)四邊形OABC是平行四邊形得到AB=CO=EF=2t,根據(jù)等腰直角三角形的性質(zhì)可求得半徑為t,利用勾股定理可求得OC=2OH,從而求得∠OCE=30°,繼而求得答案.
(1)如圖①,連接OB,
∵BC是圓的切線,∴OB⊥BC,
∵四邊形OABC是平行四邊形,
∴OA∥BC,∴OB⊥OA,
∴△AOB是等腰直角三角形,
∴∠OAB=45°;
(2)如圖②,過(guò)點(diǎn)O作OH⊥EC于點(diǎn)H,設(shè)EH=t,
∵OH⊥EC,
∴EF=2HE=2t,
∵四邊形OABC是平行四邊形,
∴AB=CO=EF=2t,
∵△AOB是等腰直角三角形,
∴OA=t,
則HO=,
∵OC=2OH,
∴∠OCE=30°,
∵HO=EH=t且OH⊥EC,
∴∠OEC=∠EOH=45°,
∴∠OEC=180°﹣∠OCE﹣∠OCE=180°﹣45°﹣30°=105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)為該二次函數(shù)在第一象限內(nèi)的一點(diǎn),連接,交于點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘游輪在A處測(cè)得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測(cè)得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=80°,AC=BC,以點(diǎn)B為旋轉(zhuǎn)中心把△ABC按順時(shí)針旋轉(zhuǎn)α度,得到△A′BC′,點(diǎn)A′恰好落在AC上,連接CC′,則∠ACC′=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,地面BD上兩根等長(zhǎng)立柱AB,CD之間有一根繩子可看成拋物線y=0.1x2﹣0.8x+5.
(1)求繩子最低點(diǎn)離地面的距離;
(2)因?qū)嶋H需要,在離AB為5米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面2米,求MN的長(zhǎng);
(3)將立柱MN的長(zhǎng)度提升為5米,通過(guò)調(diào)整MN的位置,使拋物線F2對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為.設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,但2≤k≤3時(shí),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,CF平分∠BCD,E、F在AD上,BE與CF相交于點(diǎn)G,若AB=7,BC=10,則△EFG與△BCG的面積之比為( )
A.4:25B.49:100C.7:10D.2:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列材料,然后解后面的問(wèn)題.
材料:一個(gè)三位自然數(shù) (百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c),若滿足a+c=b,則稱這個(gè)三位數(shù)為“歡喜數(shù)”,并規(guī)定F()=ac.如374,因?yàn)樗陌傥簧蠑?shù)字3與個(gè)位數(shù)字4之和等于十位上的數(shù)字7,所以374是“歡喜數(shù)”,∴F(374)=3×4=12.
(1)對(duì)于“歡喜數(shù)”,若滿足b能被9整除,求證:“歡喜數(shù)”能被99整除;
(2)已知有兩個(gè)十位數(shù)字相同的“歡喜數(shù)”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是E、D.
(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);
(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com