【題目】已知關(guān)于的一元二次方程

)對于任意的實數(shù),判斷方程的根的情況,并說明理由.

)若方程的一個根為,求出的值及方程的另一個根.

【答案】(1)證明見解析;(2m的值為-1,方程的另一個根為-2

【解析】試題分析:(1)根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=m2+8≥8,由此即可得出結(jié)論;

2)將x=1代入原方程可求出m的值,再將m的值代入原方程中解方程即可得出方程的另一個根.

試題解析:解:(1在方程x2mx﹣2=0中,△=m2﹣4×1×﹣2=m2+8≥8不論m為任意實數(shù),原方程總有兩個不相等的實數(shù)根.

2)將x=1代入原方程,得:1﹣m﹣2=0,解得:m=﹣1,原方程為x2+x﹣2=x﹣1)(x+2=0,解得:x1=1,x2=﹣2

答:m的值為﹣1,方程的另一個根為﹣2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,于點,且,點分別從點勻速運(yùn)動,速度均為;且運(yùn)動過程中始終保持,直線于點、交于點、交于點. 連接,設(shè)運(yùn)動時間為.

1)當(dāng)_____時,四邊形是平行四邊形.

2)連接,設(shè)的面積為,求之間的函數(shù)關(guān)系式;

3)是否存在某一時刻,使?若存在,求出的值;若不存在,說明理由;

4)連接,是否存在某一時刻,使點在線段的垂直平分線上?若存在,請直接寫出此時的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A是線段BC上一點,△ABD△ACE都是等邊三角形.

1)連結(jié)BE,CD,求證:BE=CD

2)如圖2,將△ABD繞點A順時針旋轉(zhuǎn)得到△AB′D′

當(dāng)旋轉(zhuǎn)角為   度時,邊AD′落在AE上;

的條件下,延長DD’CE于點P,連接BD′,CD′.當(dāng)線段AB、AC滿足什么數(shù)量關(guān)系時,△BDD′△CPD′全等?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為4的正方形紙片ABCD折疊,使得點A落在邊CD的中點E處,折痕為FG,點FG分別在邊AD、BC上,則折痕FG的長度為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】LED燈具有環(huán)保節(jié)能、投射范圍大、無頻閃、使用壽命較長等特點,在日常生活中,人們更傾向于LED燈的使用.某商場購進(jìn)了LED燈泡與普通白熾燈泡共300個,LED燈泡為每個進(jìn)價45元,售價為每個60元,普通白熾燈泡進(jìn)價為每個25元,售價為每個30.

(1)LED燈泡按原售價進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可以獲利3200.求該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?

(2)該商場又購進(jìn)LED燈泡與普通白熾燈泡若干個并展開了降價促銷活動,在促銷期間,每個LED燈泡的利潤為進(jìn)價的(m+20)%,每個普通白熾燈泡按原售價降低m%銷售.結(jié)果在促銷活動中LDE燈泡的銷售量比(1)中的銷售量降低了m%,普通白熾燈泡銷售量比(1)中銷售量上升了20%,活動共獲利2400元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與y軸交于點C,與x軸交于A、B兩點,其中點A的坐標(biāo)為(40),拋物線的對稱軸交x軸于點DCEAB,并與拋物線的對稱軸交于點E。現(xiàn)有下列結(jié)論:①b2-4ac0;②b>0;③5a+b>0;④BD+CE=4.其中結(jié)論正確的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)y=ax2+bx+a-5a、b為常數(shù),a≠0),且2a+b=3.

1)若該二次函數(shù)的圖象經(jīng)過點(-1,4),求該二次函數(shù)的解析式.

2)無論a取何常數(shù),這個二次函數(shù)的圖象始終經(jīng)過一個定點,求出這個定點坐標(biāo).

3)已知點Px0,m)和Q1,n)都在二次函數(shù)的圖象上,若x01,m>n,求x0的取值范圍(用含a的代數(shù)式表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠Ba,DEAC于點E,下列結(jié)論:①AD2AEAB;②1.8≤AE5;⑤當(dāng)AD時,△ABD≌△DCE;④△DCE為直角三角形,BD46.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次測量旗桿高度的活動中,某數(shù)學(xué)興趣小組使用的方案如下:AB表示某同學(xué)從眼睛到腳底的距離,CD表示一根標(biāo)桿,EF表示旗桿,AB,CDEF都垂直于地面,若AB=1.6米,CD=2米,人與標(biāo)桿之間的距離BD=1米,標(biāo)桿與旗桿之間的距離DF=30米,求旗桿EF的高.

查看答案和解析>>

同步練習(xí)冊答案