【題目】某班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出某種商品在第天的售價(jià)與銷量的相關(guān)信息如下表:
時(shí)間(天) | ||
售價(jià)(元/件) | 90 | |
每天銷量(件) |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為元
(1)求出與的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?
【答案】(1);(2)第45天時(shí),利潤最大,為6050元;(3)41天
【解析】
(1)根據(jù)單價(jià)乘以數(shù)量,可得利潤,可得答案;
(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案;
(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.
解:(1)當(dāng)1≤x<50時(shí),y=(2002x)(x+4030)=2x2+180x+2000,
當(dāng)50≤x≤90時(shí),y=(2002x)(9030)=120x+12000,
綜上所述:;
(2)當(dāng)1≤x<50時(shí),
∴a=2<0,
∴二次函數(shù)開口下,二次函數(shù)對(duì)稱軸為x=45,
當(dāng)x=45時(shí),y最大=6050,
當(dāng)50≤x≤90時(shí),y隨x的增大而減小,
當(dāng)x=50時(shí),y最大=6000,
綜上所述,該商品第45天時(shí),當(dāng)天銷售利潤最大,最大利潤是6050元;
(3)①當(dāng)1≤x<50時(shí),,
解得:20≤x≤70,
因此利潤不低于4800元的天數(shù)是20≤x<50,共30天;
②當(dāng)50≤x≤90時(shí),
解得:x≤60,
因此利潤不低于4800元的天數(shù)是50≤x≤60,共11天,
所以該商品在整個(gè)銷售過程中,共41天每天銷售利潤不低于4800元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點(diǎn),頂點(diǎn)為D1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得到C2,頂點(diǎn)為D2;C1與C2組成一個(gè)新的圖象,垂直于y軸的直線l與新圖象交于點(diǎn)P1(x1,y1),P2(x2,y2),與線段D1D2交于點(diǎn)P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是( 。
A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.
(1)求證:BG=DE.
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“精準(zhǔn)扶貧”精神,市農(nóng)科院專家指導(dǎo)李大爺利用坡前空地種植優(yōu)質(zhì)草莓.根據(jù)場(chǎng)調(diào)查,在草莓上市銷售的30天中,其銷售價(jià)格(元/公斤)與第天之間滿足(為正整數(shù)),銷售量(公斤)與第天之間的函數(shù)關(guān)系如圖所示:
如果李大爺?shù)牟葺谏鲜袖N售期間每天的維護(hù)費(fèi)用為80元.
(1)求銷售量與第天之間的函數(shù)關(guān)系式;
(2)求在草莓上市銷售的30天中,每天的銷售利潤與第天之間的函數(shù)關(guān)系式;(日銷售利潤=日銷售額﹣日維護(hù)費(fèi))
(3)求日銷售利潤的最大值及相應(yīng)的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊中,點(diǎn)是邊上一點(diǎn),連接,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,連接,則下列結(jié)論中:①;②;③;④,其中正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點(diǎn)上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數(shù)表達(dá)式.已知點(diǎn)與球網(wǎng)的水平距離為,球網(wǎng)的高度為.
(1)當(dāng)時(shí),①求的值.②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到點(diǎn)的水平距離為,離地面的高度為的處時(shí),乙扣球成功,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的一邊AB為直徑作⊙O,交于BC的中點(diǎn)D,過點(diǎn)D作直線EF與⊙O相切,交AC于點(diǎn)E,交AB的延長線于點(diǎn)F.若△ABC的面積為△CDE的面積的8倍,則下列結(jié)論中,錯(cuò)誤的是( 。
A.AC=2AOB.EF=2AEC.AB=2BFD.DF=2DE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com