已知D是銳角△ABC外接圓劣弧的中點(diǎn),弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.
【答案】分析:(1)求出∠BAD=∠CAD,根據(jù)角平分線(xiàn)性質(zhì)推出=,代入求出即可;
(2)作BF⊥AC于F,求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過(guò)圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.
解答:解:(1)∵弧BD=弧DC,
∴∠BAD=∠CAD,
,

答:EC:CB的值是

(2)作BF⊥AC于F,
=,=,
∴BA=BC,
∴F為AC中點(diǎn),
∴cosC==
答:cosC的值是

(3)BF過(guò)圓心O,作OM⊥BC于M,
由勾股定理得:BF==CF,
∴tan
答:tan的值是
點(diǎn)評(píng):本題主要考查對(duì)圓周角定理,弧、弦、圓心角的關(guān)系,勾股定理,角平分線(xiàn)性質(zhì),銳角三角函數(shù)的定義,等腰三角形的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知D是銳角△ABC外接圓劣弧
BC
的中點(diǎn),弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan
B
2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沈河區(qū)模擬)已知⊙O是銳角△ABC的外接圓,AB=5cm,AC=
10
cm,BC.邊上的高AD=3cm.
(1)求△ABC外接圓的半徑.
(2)取
AC
的中點(diǎn)G,連BG交AD于E,試求BE的長(zhǎng).
(3)若動(dòng)點(diǎn)M從點(diǎn)D出發(fā)在線(xiàn)段DB上來(lái)回勻速運(yùn)動(dòng),速度為2cm/秒,動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā)在劣弧BC上勻速運(yùn)動(dòng),到C點(diǎn)停止運(yùn)動(dòng).問(wèn)是否存在某一時(shí)間(最短時(shí)間)使△MNB與△ADC相似?若存在,試求出MN•MB的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知O是銳角△ABC三邊中垂線(xiàn)的交點(diǎn),∠A=50°,則∠BOC的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知D是銳角△ABC外接圓劣弧數(shù)學(xué)公式的中點(diǎn),弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan數(shù)學(xué)公式的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案