如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(3,0),C(0,2),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.

(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;

(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;

(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)M,使△PEM是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)M的坐標(biāo).

答案:
解析:

  解:(1)由翻折知:PB平分∠APD,PE平分∠OPF,又∵PD、PF重合

  ∴∠BPE=90°.

  ∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,

  ∴∠OPE=∠PBA.

  ∴△POE∽△BPA;1分

  ∴;即;∴y=x(3-x)=-x2x(0<x<3);2分

  ∴

  ∴x=時(shí),y有最大值.3分

  (2)由題意知:△PAB、△POE均為等腰直角三角形,

  ∴P(1,0),E(0,1),B(3,2).4分

  設(shè)過此三點(diǎn)的拋物線為y=ax2+bx+C,則;5分

  ∴yx2x+1;6分

  (3)①若∠EPM=90°

  由(2)知∠EPB=90°,∴點(diǎn)M與點(diǎn)B重合時(shí)滿足條件.此時(shí)M(3,2);7分

 、谌簟螾EM=90°

  ∵直線PB為y=x-1,與y軸交于點(diǎn)(0,-1).

  ∴將PB向上平移2個(gè)單位則過點(diǎn)E(0,1),得直線EM為y=x+1.

  此時(shí)EM⊥EP

  ∴直線EM:y=x+1與拋物線yx2x+1的交點(diǎn)M也滿足條件

  由(舍去),∴M(4,5);8分

  ∴由①、②知該拋物線上存在M(3,2)或M(4,5)滿足條件.9分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案