【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向運營,向東走為正,向西走為負(fù),行車?yán)锍蹋▎挝唬憨N)依先后次序記錄如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.

⑴將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠(yuǎn)?在鼓樓的什么方向?

⑵若每千米的價格為2.4元,司機(jī)一個下午的營業(yè)額是多少?

【答案】(1)出租車離鼓樓出發(fā)點0千米;(2139.2

【解析】試題

(1)先列式求出所有行車?yán)锍讨,然后根?jù)“和”的絕對值確定“終點”距“鼓樓”多遠(yuǎn);根據(jù)“和”的正、負(fù)確定“終點”在“鼓樓”的哪個方向;

(2)先列式求出所有行車?yán)锍痰慕^對值之和,再與每千米單價相乘得到營業(yè)總額;

試題解析

(1)解:9+(-3)+(-5)+4+(-8)+6+(-3)+(-6)+(-4)+10=0

出租車離鼓樓出發(fā)點0千米 ;

(2)|9|+|-3|+|-5|+|4|+|-8|+|6|+|-3|+|-6|+|-4|+|10|=58(千米)

58 2.4=139.2(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(﹣37)﹣(﹣47) (2)10﹣(﹣5)+(﹣9)+6.

(3))-7+13-6+20 (4)0.125+3-(+3)+(﹣0.25)

(5)﹣|﹣1|+||+(﹣2).

(6)1+(﹣2)+3+(﹣4)+…+2017+(﹣2018)+2019+(﹣2020)

(7)(﹣5)+(﹣9)+17+(﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了美化校園環(huán)境,在一塊長40米,寬20米的長方形空地上計劃新建一塊長9米,寬7米的長方形花圃.

1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案;

2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用:

(1)如圖,可以求出陰影部分的面積是_____(寫成兩數(shù)平方差的形式);

(2)如圖,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是_____,長是_____,面積是________(寫成多項式乘法的形式);

(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式:_________(用式子表達(dá));

(4)運用你所得到的公式,計算下列式子:(2m+n﹣p)(2m﹣n+p)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E,連接CD.
(1)求證:DE為⊙O的切線;
(2)若AB=4 ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購買一批單價為20元的日用品,如果以單價30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價,才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B、CD四個整數(shù)點(即各點均表示整數(shù)),且2AB=BC=3CD,若A、D兩點表示的數(shù)分別為﹣56,且AC的中點為E,BD的中點為M,BC之間距點B的距離為BC的點N,則該數(shù)軸的原點為( 。

A. E B. F C. M D. N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=120°,射線OCOA開始,繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘20°;射線ODOB開始,繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘5°,OCOD同時旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t(0≤t≤15).

(1)當(dāng)t為何值時,射線OCOD重合;

(2)當(dāng)t為何值時,∠COD=90°;

(3)試探索:在射線OCOD旋轉(zhuǎn)的過程中,是否存在某個時刻,使得射線OC,OBOD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請求出所有滿足題意的t的取值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.

(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

同步練習(xí)冊答案