【題目】小明學(xué)習(xí)完《相似三角形》一章后,發(fā)現(xiàn)了一個(gè)有趣的結(jié)論:在兩個(gè)不相似的直角三角形中,分別存在經(jīng)過直角頂點(diǎn)的一條直線,把直角三角形分成兩個(gè)小三角形后,如果第一個(gè)直角三角形分割出來的一個(gè)小三角形與第二個(gè)直角三角形分割出來的一個(gè)小三角形相似,那么分割出來的另外兩個(gè)小三角形也相似.他把這樣的兩條直線稱為這兩個(gè)直角三角形的相似分割線.如圖1、圖2,直線CG、DH分別是兩個(gè)不相似的RtABCRtDEF的相似分割線,CG、DH分別與斜邊AB、EF交于點(diǎn)G、H,如果△BCG與△DFH相似,AC3,AB5DE4,DF8,那么AG_____

【答案】3

【解析】

先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,設(shè)AGx,用含x的式子表示出DH;按照相似分割線可知,△AGC∽△DHE,但要先得出兩個(gè)相似三角形的邊或角是如何對應(yīng)的,再根據(jù)相似三角形的性質(zhì)列出比例式,解得x值即可.

解:∵RtABC,AC3,AB5,

∴由勾股定理得:BC4,

∵△BCG∽△DFH,

,

已知DF8,設(shè)AGx,則BG5x,

DH102x,

∵△BCG∽△DFH

∴∠B=∠FDH,∠BGC=∠CHF,

∴∠AGC=∠DHE

∵∠A+B90°,∠EDH+FDH90°

∴∠A=∠EDH,

∴△AGC∽△DHE

,

DE4,

,

解得:x3,

經(jīng)檢驗(yàn),x3是原方程的解,且符合題意.

AG3

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一拱橋的橋拱是圓弧形,已知橋拱的水面跨度AB(弧所對的弦的長)為8米,拱高CD(弧的中點(diǎn)到弦的距離)為2米.

1)求橋拱所在圓的半徑長;

2)如果水面AB上升到EF時(shí),從點(diǎn)E測得橋頂D的仰角為α,且cotα3,求水面上升的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:,,,將以上三個(gè)等式兩邊分別相加得:

1)觀察發(fā)現(xiàn)

_________;

__________

2)初步應(yīng)用

利用(1)的結(jié)論,解決下列問題:

拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之差,即__________;

拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之和,即__________

3)深入探究

定義“◆”是一種新的運(yùn)算,若,,,則計(jì)算的結(jié)果是_________.

4)拓展延伸

第一次用一條直徑將圓周分成兩個(gè)半圓(如圖),在每個(gè)分點(diǎn)標(biāo)上質(zhì)數(shù),記2個(gè)數(shù)的和為,第二次將兩個(gè)半圓都分成圓,在新產(chǎn)生的分點(diǎn)標(biāo)相鄰的已標(biāo)的兩個(gè)數(shù)的和的,記4個(gè)數(shù)的和為;第三次將四個(gè)圓分成圓,在新產(chǎn)生的分點(diǎn)標(biāo)相鄰的已標(biāo)的兩個(gè)數(shù)的和的,記8個(gè)數(shù)的和為;第四次將八個(gè)圓分成圓,在新產(chǎn)生的分點(diǎn)標(biāo)相鄰的已標(biāo)的兩個(gè)數(shù)的和的,記16個(gè)數(shù)的和為;……如此進(jìn)行了次.

_________(用含、的代數(shù)式表示);

,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位計(jì)劃購進(jìn)三種型號的禮品共件,其中型號禮品件,型號禮品比型號禮品多件.已知三種型號禮品的單價(jià)如下表:

型號

單價(jià)(元/件)

1)求計(jì)劃購進(jìn)兩種型號禮品分別多少件?

2)實(shí)際購買時(shí),廠家給予打折優(yōu)惠銷售(如: 折指原價(jià),在計(jì)劃總價(jià)額不變的情況下,準(zhǔn)備購進(jìn)這批禮品.

①若只購進(jìn)兩種型號禮品,且型禮品件數(shù)不超過型禮品的倍,求型禮品最多購進(jìn)多少件?

②若只購進(jìn)兩種型號禮品,它們的單價(jià)分別打折、折,均為整數(shù),且購進(jìn)的禮品總數(shù)比計(jì)劃多件,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電工想換房間的燈泡,已知燈泡到地面的距離為,現(xiàn)有一架家用可調(diào)節(jié)式腳踏人字梯,其中踏板、地面都是水平的.梯子的側(cè)面簡化結(jié)構(gòu)如圖所示,左右支撐架長度相等,.設(shè)梯子一邊與地面的夾角為,且可調(diào)節(jié)的范圍為.當(dāng)時(shí),電工站在梯子安全擋中最高一檔踏板上的最大觸及高度為

1)當(dāng)時(shí),求踏板離地面的高度.(精確到

2)調(diào)節(jié)角度,試判斷電工是否可以換下燈泡,并說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是半圓O的直徑,AB6,點(diǎn)C在半圓O上.過點(diǎn)AADOC,垂足為點(diǎn)D,AD的延長線與弦BC交于點(diǎn)E,與半圓O交于點(diǎn)F(點(diǎn)F不與點(diǎn)B重合).

1)當(dāng)點(diǎn)F的中點(diǎn)時(shí),求弦BC的長;

2)設(shè)ODxy,求yx的函數(shù)關(guān)系式;

3)當(dāng)△AOD與△CDE相似時(shí),求線段OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過點(diǎn)A(﹣2,0),B(0、﹣4)與x軸交于另一點(diǎn)C,連接BC.

(1)求拋物線的解析式;

(2)如圖,P是第一象限內(nèi)拋物線上一點(diǎn),且SPBO=SPBC,求證:AP∥BC;

(3)在拋物線上是否存在點(diǎn)D,直線BD交x軸于點(diǎn)E,使ABE與以A,B,C,E中的三點(diǎn)為頂點(diǎn)的三角形相似(不重合)?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABCBCAC4,D是斜邊AB上的一個(gè)動點(diǎn),把△ACD沿直線CD折疊,點(diǎn)A落在同一平面內(nèi)的A′處,當(dāng)A′D垂直于Rt△ABC的直角邊時(shí),AD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項(xiàng)測試:筆試、面試、實(shí)習(xí).學(xué)生的最終成績由筆試面試、實(shí)習(xí)依次按325的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對他們的兩項(xiàng)成績分別進(jìn)行了整理和分析.下面給出了部分信息:

①公司將筆試成績(百分制)分成了四組,分別為A組:60≤x70,B組:70≤x80,C組:80≤x90,D組:90≤x100;并繪制了如下的筆試成績頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:8081,8283,8384,84,85,86,88,88,88,89

②這些大學(xué)生的筆試、面試成績的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:

平均數(shù)

中位數(shù)

眾數(shù)

最高分

筆試成績

81

m

92

97

面試成績

80.5

84

86

92

根據(jù)以上信息,回答下列問題:

1)這批大學(xué)生中筆試成績不低于88分的人數(shù)所占百分比為   

2m   分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績都是83分,那么該同學(xué)成績排名靠前的是   成績,理由是   

3)乙同學(xué)也參加了本次招聘,筆試成績雖不是最高分,但也不錯(cuò),分?jǐn)?shù)在D組;面試成績?yōu)?/span>88分,實(shí)習(xí)成績?yōu)?/span>80分由表格中的統(tǒng)計(jì)數(shù)據(jù)可知乙同學(xué)的筆試成績?yōu)?/span>   分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請通過計(jì)算說明,該同學(xué)最終能否被錄用?

查看答案和解析>>

同步練習(xí)冊答案