【題目】已知∠AOB=30°,P是OA上的一點,OP=24cm,以r為半徑作⊙P.
(1)若r=12cm,試判斷⊙P與OB位置關(guān)系;
(2)若⊙P與OB相離,試求出r需滿足的條件.
【答案】
(1)解:過點P作PC⊥OB,垂足為C,
則∠OCP=90°.
∵∠AOB=30°,OP=24cm,
∴PC= OP=12cm.
當(dāng)r=12cm時,r=PC,
∴⊙P與OB相切,
即⊙P與OB位置關(guān)系是相切.
(2)當(dāng)⊙P與OB相離時,r<PC,
∴r需滿足的條件是:0cm<r<12cm.
【解析】(1)過點P作PC⊥OB,垂足為C根據(jù)含30度角的直角三角形性質(zhì)求出PC,得出PC=r,則得出⊙P與OB位置關(guān)系是相切;(2)根據(jù)相切時半徑=12,再根據(jù)當(dāng)r<d時相離,即可求出答案.
【考點精析】本題主要考查了直線與圓的三種位置關(guān)系的相關(guān)知識點,需要掌握直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=8cm.點P從點A出發(fā),沿AB勻速運動;點Q從點C出發(fā),沿C→B→A→D→C的路徑勻速運動.兩點同時出發(fā),在B點處首次相遇后,點P的運動速度每秒提高了3cm,并沿B→C→D→A的路徑勻速運動;點Q保持速度不變,繼續(xù)沿原路徑勻速運動,3s后兩點在長方形ABCD某一邊上的E點處第二次相遇后停止運動.設(shè)點P原來的速度為xcm/s.
(1)點Q的速度為 cm/s(用含x的代數(shù)式表示);
。2)求點P原來的速度.
(3)判斷E點的位置并求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=α°,∠COD在∠AOB內(nèi)部且∠COD=β°.
(1)若α,β滿足|α-2β|+(β-60)2=0,則①α= ;
②試通過計算說明∠AOD與∠COB有何特殊關(guān)系;
(2)在(1)的條件下,如果作OE平分∠BOC,請求出∠AOC與∠DOE的數(shù)量關(guān)系;
(3)若α°,β°互補,作∠AOC,∠DOB的平分線OM,ON,試判斷OM與ON的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3的頂點為M(2,﹣1),交x軸于點A、B兩點,交y軸于點C,其中點B的坐標(biāo)為(3,0).
(1)求拋物線的解析式;
(2)設(shè)經(jīng)過點C的直線與該拋物線的另一個點為D,且直線CD和直線CA關(guān)于直線CB對稱,求直線CD的解析式;
(3)在該拋物線的對稱軸上存在點P,滿足PM2+PB2+PC2=35,求點P的坐標(biāo);并直接寫出此時直線OP與該拋物線交點的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2012年6月3號國際田聯(lián)鉆石聯(lián)賽美國尤金站比賽中,百米跨欄飛人劉翔以12.87s的成績打破世界記錄并輕松奪冠.A、B兩鏡頭同時拍下了劉翔沖刺時的畫面(如圖),從鏡頭B觀測到劉翔的仰角為60°,從鏡頭A觀測到劉翔的仰角為30°,若沖刺時的身高大約為1.88m,請計算A、B兩鏡頭之間的距離為 . (結(jié)果保留兩位小數(shù), ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,其中弧DE、弧EF、弧FG的圓心依次為點A、B、C.
(1)求點D沿三條弧運動到點G所經(jīng)過的路線長;
(2)判斷直線GB與DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老王的魚塘里年初養(yǎng)了某種魚2000條,到年底捕撈出售,為了估計魚的總產(chǎn)量,從魚塘里捕撈了三次,得到如下表的數(shù)據(jù):
魚的條數(shù) | 平均每條魚的質(zhì)量 | |
第一次捕撈 | 10 | 1.7千克 |
第二次捕撈 | 25 | 1.8千克 |
第三次捕撈 | 15 | 2.0千克 |
若老王放養(yǎng)這種魚的成活率是95%,則:
(1)魚塘里這種魚平均每條重約多少千克?
(2)魚塘里這種魚的總產(chǎn)量是多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com