【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D是邊BC的中點(diǎn),聯(lián)結(jié)AD.過點(diǎn)CCEAD于點(diǎn)E,聯(lián)結(jié)BE

1)求證:BD2DEAD;

2)如果∠ABC=∠DCE,求證:BDCEBEDE

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)證明△CDE∽△ADC推出,可得CD2DEDA即可解決問題.

2)利用相似三角形的性質(zhì)首先證明ACBE,再證明△ACE∽△CDE,可得,可得即可解決問題.

解:

1)證明:如圖1中,

CEAD,

∴∠CED=∠ACD90,

∵∠CDE=∠ADC,

∴△CDE∽△ADC

CD2DEDA,

DBCD,

∴∴BD2DEDA

2)解:如圖2中,

BD2DEDA,

,

∵∠CDE=∠ADB,

∴△BDE∽△ADB,

∴∠DEB=∠ABC,

∵∠ABD=∠ECD,

∴∠BED=∠BCE,

∵∠EBD=∠CBE,

∴△EBD∽△CBE,

,

BE2BDBC,

CDBD

BE22CD2,

∵∠DCE+ACE90,∠CAD+ACE90,

∴∠CAD=∠ECD=∠ABC

∵∠ACD=∠BCA,

∴△ACD∽△BCA,

,

AC2CDCB2CD2

ACBE,

∵△ACE∽△CDE,

,

BDCEBEDE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,弦AC,BD相交于點(diǎn)M,且∠A=∠B

1)求證:ACBD;

2)若OA4,∠A30°,當(dāng)ACBD時(shí),求弧CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CDAB,垂足為點(diǎn)P,直線BFAD延長線交于點(diǎn)F,且∠AFB=∠ABC

1)求證:直線BF是⊙O的切線;

2)若CD2BP1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(40),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙Py軸的負(fù)半軸交于點(diǎn)C

1)求經(jīng)過A、BC三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

2)設(shè)M為(1)中拋物線的頂點(diǎn),試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;

3)在第二象限中是否存在的一點(diǎn)Q,使得以A,OQ為頂點(diǎn)的三角形與OBC相似.若存在,請(qǐng)求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3

(1)求拋物線的解析式.

(2)若點(diǎn)D(22)是拋物線上一點(diǎn),那么在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BDP的周長最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

注:二次函數(shù)≠0)的對(duì)稱軸是直線=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在RtABC中,∠ACB90°,∠A30°,點(diǎn)OAB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與B、C重合),連接OC、OP,將OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ,若∠BPO15°,BP4,則BQ的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yax2+bx+cx軸交于AB兩點(diǎn),A(﹣50),與y軸交于C0,﹣5),并且對(duì)稱軸x=﹣3

1)求拋物線的解析式;

2Px軸上方的拋物線上,過P的直線yx+m與直線AC交于點(diǎn)M,與y軸交于點(diǎn)N,求PM+MN的最大值;

3)點(diǎn)D為拋物線對(duì)稱軸上一點(diǎn),

①當(dāng)△ACD是以AC為直角邊的直角三角形時(shí),求D點(diǎn)坐標(biāo);

②若△ACD是銳角三角形,求點(diǎn)D的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C

1)求點(diǎn)A,B,C的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動(dòng)點(diǎn)E,F同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個(gè)單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)F停止運(yùn)動(dòng)時(shí),點(diǎn)E隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)EF,將AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到DEF.當(dāng)點(diǎn)FAC上時(shí),是否存在某一時(shí)刻t,使得DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點(diǎn)的直線與反比例函數(shù))的圖象交于,兩點(diǎn),點(diǎn)在第一象限.點(diǎn)軸正半軸上,連結(jié)交反比例函數(shù)圖象于點(diǎn)的平分線,過點(diǎn)的垂線,垂足為,連結(jié).若是線段中點(diǎn),的面積為4,則的值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案