【題目】完成下面的證明:
如圖,已知,,可推得.
理由如下:∵(已知),
且( )
∴(等量代換)
∴________∥________( )
∴∠________( )
又∵(已知)
∴( )
∴( )
【答案】對頂角相等;CE;BF;同位角相等,兩直線平行;C;兩直線平行,同位角相等;等量代換;內(nèi)錯角相等,兩直線平行.
【解析】
求出∠1=∠AHB,根據(jù)平行線的判定推出CE∥BF,根據(jù)平行線的性質(zhì)得出∠C=∠BFD,求出∠BFD=∠B,再根據(jù)平行線的判定得出即可.
如圖,已知,,可推得.理由如下:
∵(已知)
且(對頂角相等)
∴(等量代換)
∴(同位角相等,兩直線平行)
∴(兩直線平行,同位角相等)
又∵(已知)
∴(等量代換)
∴(內(nèi)錯角相等,兩直線平行)
故答案為:對頂角相等,CE,BF,同位角相等,兩直線平行,C,兩直線平行,同位角相等,等量代換,內(nèi)錯角相等,兩直線平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次捐款活動中,某班50名同學(xué)人人拿出自己的零花錢,有捐5元、10元、20元的,還有捐50元和100元的.如圖的統(tǒng)計圖反映了不同捐款數(shù)的人數(shù)比例,那么該班同學(xué)平均每人捐款( )
A. 32.4元 B. 31.2元 C. 31元 D. 32元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5 cm,且tan∠EFC=0.75,則矩形ABCD的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】◆探索發(fā)現(xiàn):如圖是一種網(wǎng)紅彈弓的實(shí)物圖,在兩頭上系上皮筋,拉動皮筋可形成平面示意圖如圖1、圖2,彈弓的兩邊可看成是平行的,即.各活動小組探索與,之間的數(shù)量關(guān)系.已知,點(diǎn)不在直線和直線上.在圖1中,智慧小組發(fā)現(xiàn):;
智慧小組是這樣思考的:過點(diǎn)作,……
請你按照智慧小組作的輔助線補(bǔ)全推理過程.
◆類比思考:①在圖2中,與,之間的數(shù)量關(guān)系為________.
②如圖3,已知,則角、、之間的數(shù)量關(guān)系為________.
◆解決問題:善思小組提出:如圖4,圖5.,,分別平分,.
①在圖4中,與之間的關(guān)系為________.
②在圖5中,與之間的關(guān)系為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市實(shí)行中考改革,需要根據(jù)該市中學(xué)體能的實(shí)際情況重新制定中考體育標(biāo)準(zhǔn).為此,抽取了50名初中畢業(yè)的女學(xué)生進(jìn)行“一分鐘仰臥起坐”次數(shù)測試.測試的情況繪制成表格如下:
(1)求這次抽樣測試數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(2)根據(jù)這一樣本數(shù)據(jù)的特點(diǎn),你認(rèn)為該市中考女生“一分鐘仰臥起坐”項(xiàng)目測試的合格標(biāo)準(zhǔn)應(yīng)定為多少次較為合適?請簡要說明理由;
(3)根據(jù)(2)中你認(rèn)為合格的標(biāo)準(zhǔn),試估計該市中考女生“一分鐘仰臥起坐”項(xiàng)目測試的合格率是多少?
次數(shù) | 6 | 12 | 15 | 18 | 20 | 25 | 27 | 30 | 32 | 35 | 36 |
人數(shù) | 1 | 1 | 7 | 18 | 10 | 5 | 2 | 2 | 1 | 1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=4,P,Q是半圓O上的點(diǎn),弦PQ的長為2,則 與 的長度之和為( )
A.
B.
C.
D.π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,延長AB至點(diǎn)F,連結(jié)CF,使得CF=AF,過點(diǎn)A作AE⊥FC于點(diǎn)E.
(1)求證:AD=AE.
(2)連結(jié)CA,若∠DCA=70°,求∠CAE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com