【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊AB在x軸上,點(diǎn)B坐標(biāo)(﹣3,0),點(diǎn)C坐標(biāo)(0,4),點(diǎn)P從原點(diǎn)O出發(fā),以每秒一個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng),移動(dòng)時(shí)間為t(0≤t≤5)秒,過(guò)點(diǎn)P作平行于y軸的直線l,直線l掃過(guò)四邊形OCDA的面積為S.
(1)求直線AD的函數(shù)表達(dá)式;
(2)當(dāng)S=時(shí),請(qǐng)直接寫(xiě)出t的值;
(3)如果點(diǎn)M是(2)中的直線1上的點(diǎn),點(diǎn)N在x軸上,并且以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).
【答案】(1)y=x﹣;(2)t的值為4秒;(3)點(diǎn)N坐標(biāo)為(1,0)或(3,0)或(7,0).
【解析】
(1)在Rt△BOC中,利用勾股定理計(jì)算BC的長(zhǎng),即菱形的邊長(zhǎng)為5,可得D和A的坐標(biāo),根據(jù)待定系數(shù)法可解答;
(2)①如圖1中,當(dāng)0≤t≤2時(shí),直線l掃過(guò)的圖象是四邊形CCQP,S=4t.②如圖2中,當(dāng)2<t≤5時(shí),直線l掃過(guò)的圖形是五邊形OCQTA.分別求解即可解決問(wèn)題;
(3)根據(jù)題意分三種情形分別作圖,根據(jù)平行四邊形的性質(zhì)即可求解.
解:(1)∵點(diǎn)B坐標(biāo)(﹣3,0),點(diǎn)C坐標(biāo)(0,4),
∴OB=3,OC=4,
在Rt△BOC中,BC===5,
∵四邊形ABCD是菱形,
∴CD=AB=BC=5,
∴A(2,0),D(5,4),
設(shè)AD的解析式為:y=kx+b,
則,解得:,
∴直線AD的函數(shù)表達(dá)式為:y=x﹣;
(2)①如圖1中,當(dāng)0≤t≤2時(shí),直線l掃過(guò)的圖象是四邊形OCQP,S=4t.
4t=,t=>2,不符合題意;
②如圖2中,當(dāng)2<t≤5時(shí),直線l掃過(guò)的圖形是五邊形OCQTA.
則OP=t,
tan∠OBC=tan∠PAT=,
∴,PT=,
S=S矩形COPQ﹣S△ATP=4t﹣×(t﹣2)×(t﹣2)=﹣t2+t﹣,
當(dāng)S=時(shí),﹣t2+t﹣=,
解得:t=4或6(舍),
綜上,當(dāng)S=時(shí),t的值為4秒;
(3)存在三種情況:
①如圖3中,四邊形MNAD是平行四邊形,此時(shí)M與Q重合,則DM=AN,
由(2)知:t=4,則CM=OP=4,
∴AN=DM=5﹣4=1,
∴ON=2﹣1=1,
∴N(1,0);
②如圖4,四邊形ANDM是平行四邊形,則DM=AN,同理得N(3,0);
③如圖5,四邊形ADNM是平行四邊形,則AD=MN=5,
∵PM=4,
Rt△PMN中,PN===3,
∴ON=4+3=7,
∴N(7,0);
綜上所述,滿足條件的點(diǎn)N坐標(biāo)為(1,0)或(3,0)或(7,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某二次函數(shù)的圖象是一條頂點(diǎn)為P(4.-4)的拋物線,它經(jīng)過(guò)原點(diǎn)和點(diǎn)A,它的對(duì)稱(chēng)軸交線段
OA于點(diǎn)M.點(diǎn)N在對(duì)移軸上,且點(diǎn)M、N關(guān)于點(diǎn)P對(duì)稱(chēng),連接AN,ON
(1)求此二次函數(shù)的解析式:
(2)若點(diǎn)A的坐標(biāo)是(6,-3).,請(qǐng)直接寫(xiě)出MN的長(zhǎng)
(3)若點(diǎn)A在拋物線的對(duì)稱(chēng)軸右側(cè)運(yùn)動(dòng)時(shí),則∠ANM與∠ONM有什么數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為等邊外一點(diǎn),,連接,若,的面積為,則的長(zhǎng)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在銳角三角形ABC中,AB=8,AC=5,BC=6,沿過(guò)點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周長(zhǎng)是7,④,⑤.其中正確的個(gè)數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過(guò)點(diǎn)A(﹣2,),與x軸相交于B,C兩點(diǎn),且B點(diǎn)坐標(biāo)為(﹣1,0).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在拋物線的對(duì)稱(chēng)軸上,且位于x軸的上方,將△BCD沿直線BD翻折得到△BC′D,若點(diǎn)C′恰好落在拋物線的對(duì)稱(chēng)軸上,求點(diǎn)C′和點(diǎn)D的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)Q,連接BQ,DQ,在拋物線上有一個(gè)動(dòng)點(diǎn)P,且S△PBD=S△BDQ,求滿足條件的點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn),,,均在格點(diǎn)上,點(diǎn)是在直線上的動(dòng)點(diǎn),連,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn).
(1)在圖①中,當(dāng)(點(diǎn)在點(diǎn)的左側(cè))時(shí),計(jì)算的值等于______.
(2)當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D②所示的網(wǎng)格中,用無(wú)刻度的直尺畫(huà)出點(diǎn),并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周日,小濤從家沿著一條筆直的公路步行去報(bào)亭看報(bào),看了一段時(shí)間后,他按原路返回家中,小濤離家的距離y(單位:m)與他所用的時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列說(shuō)法中正確的是( )
A. 小濤家離報(bào)亭的距離是900m
B. 小濤從家去報(bào)亭的平均速度是60m/min
C. 小濤從報(bào)亭返回家中的平均速度是80m/min
D. 小濤在報(bào)亭看報(bào)用了15min
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹(shù)C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=AC=+2,D是邊AC上的動(dòng)點(diǎn),BD的垂直平分線交BC于點(diǎn)E,連接DE,若△CDE為直角三角形,則BE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com