如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=
a
x
的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2)和C(-2,-3)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x為何值時(shí),kx+b-
a
x
>0?
(3)設(shè)直線AC與y軸交于點(diǎn)B,若P是坐標(biāo)軸上一點(diǎn),且滿足△PAB的面積是6,求點(diǎn)P的坐標(biāo).
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題
專題:
分析:(1)把C點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式可求得a,把A點(diǎn)坐標(biāo)代入可求得m,可得到A點(diǎn)坐標(biāo),再把A、C坐標(biāo)代入一次函數(shù)解析式可求得k、b的值,可求得兩函數(shù)的解析式;
(2)根據(jù)A、C兩點(diǎn)的坐標(biāo),結(jié)合函數(shù)圖象可直接得到不等式的解集;
(3)分P點(diǎn)在x軸和y軸上,分別設(shè)出P點(diǎn)坐標(biāo),根據(jù)條件可得到關(guān)于坐標(biāo)的方程,可求得P點(diǎn)的坐標(biāo).
解答:解:(1)∵函數(shù)y=
a
x
的圖象過A、C兩點(diǎn),
∴a=-2×(-3)=2m,解得a=6,m=3,
∴反比例函數(shù)解析式為y=
6
x
,A點(diǎn)坐標(biāo)為(3,2),
又∵一次函數(shù)y=kx+b過A、C兩點(diǎn),
∴把A、C坐標(biāo)代入可得
3k+b=2
-2k+b=-3
,解得
k=1
b=-1
,
∴一次函數(shù)解析式為y=x-1;
(2)∵kx+b-
a
x
>0可化為kx+b>
a
x
,
∴對(duì)應(yīng)x的范圍為滿足一次函數(shù)值大于反比例函數(shù)值的x的范圍,
∴x的范圍為x>3或-2<x<0;
(3)設(shè)一次函數(shù)與x軸交于D點(diǎn),

在y=x-1中,令x=0得y=-1,令y=0可得x=1,
∴B點(diǎn)坐標(biāo)為(0,-1),D點(diǎn)坐標(biāo)為(1,0),
當(dāng)P點(diǎn)在x軸上時(shí),設(shè)P為(x,0),
則PD=|x-1|,由A(3,2),B(0,-1)可得A、B兩點(diǎn)到x軸的距離分別為2、1,
∴S△PAB=
1
2
×(2+1)×|x-1|=6,
解得x=5或-3,此時(shí)P點(diǎn)坐標(biāo)為(5,0)或(-3,0);
當(dāng)P點(diǎn)在y軸上時(shí),設(shè)P為(0,y),
則PB=|y+1|,由A(3,2),可得A點(diǎn)到y(tǒng)軸的距離為3,
∴S△PAB=
1
2
×|y+1|×3=6,
解得y=3或-5,此時(shí)P點(diǎn)坐標(biāo)為(0,3)或(0,-5),
綜上可知P點(diǎn)坐標(biāo)為(5,0)或(-3,0)或(0,3)或(0,-5).
點(diǎn)評(píng):本題主要考查待定系數(shù)法求函數(shù)解析式和函數(shù)的交點(diǎn)問題,掌握函數(shù)圖象的交點(diǎn)坐標(biāo)滿足兩函數(shù)解析式是解題的關(guān)鍵.注意分類討論思想、數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2-x+c=0的兩根為x1=1,x2=-
3
2
,那么,拋物線y=-ax2+x-c與x軸的交點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,是一個(gè)正方體的展開圖,正方體的每個(gè)面都有一個(gè)數(shù)字,只有一對(duì)相對(duì)兩面的數(shù)字的積是有理數(shù),這個(gè)有理數(shù)是( 。
A、4B、6C、9D、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O是△ABC的外接圓,AC=BC,CD∥AB交OA的延長線于點(diǎn)D.
(1)求證:DC是⊙O的切線;
(2)若∠ABC=30°,求證:四邊形AOBC是菱形;
(3)若∠ABC=30°,OA=1,求DC的長及AD、DC及弧AC圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y=kx+2(k≠0)圖象過點(diǎn)(3,-4),求不等式kx+2≤0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0).
(1)圓弧所在圓的圓心M點(diǎn)的坐標(biāo)為
 
;
(2)求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明和小剛用骰子做游戲,每人各拋一次.
(1)用樹狀圖或列表的方法計(jì)算出兩次出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率;
(2)如果兩次出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù),小明得3分,如果和不是3的倍數(shù)則小剛得1分,請(qǐng)說明這個(gè)游戲是否公平?若不,請(qǐng)修改得分標(biāo)準(zhǔn),使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=2x2-3向左平移3個(gè)單位后所得拋物線的解析式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列事件是確定事件的( 。
①平分弦的直徑垂直于弦  
②點(diǎn)P(2,-1)和點(diǎn)Q(-2,1)關(guān)于原點(diǎn)對(duì)稱
③拋一枚硬幣,正面朝上  
④反比例函數(shù)y=-
2
x
,若x1<x2,則y1<y2
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案