【題目】某單位舉行“健康人生”徒步走活動(dòng),某人從起點(diǎn)體育村沿建設(shè)路到市生態(tài)園,再沿原路返回,設(shè)此人離開起點(diǎn)的路程s(千米)與徒步時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,其中從起點(diǎn)到市生態(tài)園的平均速度是4千米/小時(shí),用2小時(shí),根據(jù)圖象提供信息,解答下列問題.

1)求圖中的a值.

2)若在距離起點(diǎn)5千米處有一個(gè)地點(diǎn)C,此人從第一次經(jīng)過點(diǎn)C到第二次經(jīng)過點(diǎn)C,所用時(shí)間為1.75小時(shí).

①求AB所在直線的函數(shù)解析式;

②請(qǐng)你直接回答,此人走完全程所用的時(shí)間.

【答案】1a=8;(2)①s=–3t+14;②t=

【解析】

1)根據(jù)路程=速度×時(shí)間即可求出a值;

2)①根據(jù)速度=路程÷時(shí)間求出此人返回時(shí)的速度,再根據(jù)路程=8-返回時(shí)的速度×時(shí)間即可得出AB所在直線的函數(shù)解析式;

②令①中的函數(shù)關(guān)系式中s=0,求出t值即可.

1a=4×2=8

2)①此人返回的速度為(8–5÷1.75–=3(千米/小時(shí)),

AB所在直線的函數(shù)解析式為s=8–3t–2=–3t+14

②當(dāng)s=–3t+14=0時(shí),t=

答:此人走完全程所用的時(shí)間為小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有標(biāo)號(hào)分別為1,2,3,4的四個(gè)球,這些球除標(biāo)號(hào)數(shù)字外都相同.

(1)從盒中隨機(jī)摸出一個(gè)小球,求摸到標(biāo)號(hào)數(shù)字為奇數(shù)的球的概率;

(2)甲、乙兩人用這四個(gè)小球玩摸球游戲,規(guī)則是:甲從盒中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào)數(shù)字后放回盒里,充分搖勻后,乙再?gòu)暮兄须S機(jī)摸出一個(gè)小球,并記下標(biāo)號(hào)數(shù)字.若兩次摸到球的標(biāo)號(hào)數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到球的標(biāo)號(hào)數(shù)字為一奇一偶,則判乙贏.請(qǐng)用列表法或畫樹狀圖的方法說明這個(gè)游戲?qū)、乙兩人是否公平?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為A (0,2),B(﹣1,0),點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過點(diǎn)D.

(1)如圖1,若該拋物線經(jīng)過原點(diǎn)O,且a=﹣1.

求點(diǎn)D的坐標(biāo)及該拋物線的解析式;

連結(jié)CD,問:在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)E(﹣1,1),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余,若符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),請(qǐng)直接寫出a的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共件,這兩種商品的進(jìn)價(jià)、售價(jià)如表所示:

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

甲種商品

乙種商品

設(shè)購(gòu)進(jìn)甲種商品,且為整數(shù))件,售完此兩種商品總利潤(rùn)為元.

1)該商場(chǎng)計(jì)劃最多投入元用于購(gòu)進(jìn)這兩種商品共件,求至少購(gòu)進(jìn)甲種商品多少件?

2)求的函數(shù)關(guān)系式;

3)若售完這些商品,商場(chǎng)可獲得的最大利潤(rùn)是__________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1),A2(11),A3(10),A4(20),那么點(diǎn)A2016的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A -1,0),B 5,0)兩點(diǎn),直線y軸交于點(diǎn),與軸交于點(diǎn)點(diǎn)x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交直線于點(diǎn)設(shè)點(diǎn)的橫坐標(biāo)為

1)求拋物線的解析式;

2)若,求的值;

3)若點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在軸上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是ABC的內(nèi)心,AE的延長(zhǎng)線與ABC的外接圓相交于點(diǎn)D.

(1)BAC=70°,求CBD的度數(shù);

(2)求證:DE=DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+4x-

(1)用配方法把該函數(shù)解析式化為y=a(x﹣h)2+k的形式,并指出函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);

(2)求函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠C=90°,∠BAC=30°,點(diǎn)D為邊BC上的點(diǎn),連接AD,∠BAD=α,點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)為G,線段EGAB于點(diǎn)F,連接AE,DE,DGAG

1)依題意補(bǔ)全圖形;

2)求∠AGE的度數(shù)(用含α的式子表示);

3)猜想:線段EGEFAF之間是否存在一個(gè)數(shù)量關(guān)系?若存在,請(qǐng)寫出這個(gè)數(shù)量關(guān)系并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案