【題目】如圖,在中,通過直尺和圓規(guī)作的平分線交于點,以為圓心,為半徑的弧交于點,連結,若,,則四邊形的面積是________

【答案】

【解析】

首先根據(jù)基本作圖可知AB=AF,再結合AO平分∠BAD,利用等腰三角形性質可知AOBF,且BO=OF=3,然后通過平行四邊形性質可知AFBE,根據(jù)平行線性質得出∠DAE=AEB,從而得出∠BAE=AEB,由此得出AB=BE=AF,據(jù)此即可證明四邊形ABEF為菱形,最后利用勾股定理求出AO,從而得出AE,最后據(jù)此進一步計算即可.

由題意可得:AF=AB,

AO平分∠BAD,

∴∠FAE=BAE,AOBF,BO=FO=BF=3,

∵四邊形ABCD是平行四邊形,

AFBE

∴∠DAE=AEB,

∴∠BAE=AEB,

AF=AB=BE,

∴四邊形ABEF是菱形,

RtABO中,AB=5BO=3,

AO=,

AE=2AO=8,

∴四邊形ABEF的面積=,

故答案為:24.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線yax22ax+4a0)交x軸于點AB,與y軸交于點CAB6

1)如圖1,求拋物線的解析式;

2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設△RBC的面積為s,點R的橫坐標為t,求st的函數(shù)關系式;

3)在(2)的條件下,如圖3,點Dx軸的負半軸上,點Fy軸的正半軸上,點EOB上一點,點P為第一象限內一點,連接PD、EF,PDOC于點G,DGEFPD⊥EF,連接PE∠PEF2∠PDE,連接PB、PC,過點RRT⊥OB于點T,交PC于點S,若點PBT的垂直平分線上,OBTS,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,長方形的三個頂點的坐標為,,,且軸,點是長方形內一點(不含邊界).

1)求,的取值范圍.

2)若將點向左移動8個單位,再向上移動2個單位到點,若點恰好與點關于軸對稱,求,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展以“我最喜歡的職業(yè)”為主題的調查活動,通過對學生的隨機抽樣調查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.

1)把折線統(tǒng)計圖補充完整;

2)求出扇形統(tǒng)計圖中,公務員部分對應的圓心角的度數(shù);

3)若從被調查的學生中任意抽取一名,求取出的這名學生最喜歡的職業(yè)是“教師”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結果精確到0.1小時)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平直角坐標系中,規(guī)定:拋物線的相關直線為.例如:二次函數(shù)的相關直線為

1)直接寫出拋物線的相關直線,并求出拋物線與其相關直線的交點坐標;

2)如圖,拋物線與它的相關直線交于、兩點.

①求拋物線的解析式;

②連結,求的面積;

③作,過拋物線上一動點(不與重合)作直線的平行線交于點,若以點、、為頂點的四邊形是平行四邊形,直接寫出點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線ykxk0)相交于點A、B,以AB為底作等腰三角形,使∠ACB120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數(shù)圖象上,則這個圖象所對應的函數(shù)解析式為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與直線分別交于點.直線交于點.記線段,圍成的區(qū)域(不含邊界)為.橫,縱坐標都是整數(shù)的點叫做整點.

1)當時,區(qū)域內的整點個數(shù)為_____;

2)若區(qū)域內沒有整點,則的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】期末考試后,某市第一中學為了解本校九年級學生期末考試數(shù)學學科成績情況,決定對該年級學生數(shù)學學科期末考試成績進行抽樣分析,已知九年級共有12個班,每班48名學生,請按要求回答下列問題:

(收集數(shù)據(jù))

(1)若要從全年級學生中抽取一個48人的樣本,你認為以下抽樣方法中比較合理的有 ;(只要填寫序號即可)

①隨機抽取一個班級的48名學生;②在全年級學生中隨機抽取48名學生;③在全年級12個班中分別各抽取4名學生;④從全年級學生中隨機抽取48名男生;

(整理數(shù)據(jù))

(2)將抽取的48名學生的成績進行分組,繪制頻數(shù)分布表和成績分布扇形統(tǒng)計圖(不完整)如下.請根據(jù)圖表中數(shù)據(jù)填空:

C類和D類部分的圓心角度數(shù)分別為 、

②估計全年級A、B類學生大約一共有 名;

成績(分)

頻數(shù)

頻率

A類(80~100

0.5

B類(60~79

0.25

C類(40~59

8

D類(0~39

4

(3)學校為了解其他學校教學情況,將同層次的第一、第二兩所中學的抽樣數(shù)據(jù)進行對比,得下表:

學校

平均分(分)

極差(分)

方差

A、B類的頻率和

第一中學

71

52

432

0.75

第二中學

71

80

497

0.82

你認為哪所學校的教學效果較好?結合數(shù)據(jù),請給出一個解釋來支持你的觀點.

查看答案和解析>>

同步練習冊答案