【題目】如圖Rt△ABC中,∠ACB=90°,AC=4,BC=2,點(diǎn)P在邊AC上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A、C不重合).以P為圓心,PA為半徑作⊙P交邊AB于點(diǎn)D、過點(diǎn)D作⊙P的切線交射線BC于點(diǎn)E(點(diǎn)E與點(diǎn)B不重合).
(1)求證:BE=DE;
(2)若PA=1.求BE的長(zhǎng);
(3)在P點(diǎn)的運(yùn)動(dòng)過程中.(BE+PA)PA的值是否有最大值?如果有,求出最大值;如果沒有,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)BE=3;(3)(BE+PA)PA有最大值,最大值為.
【解析】
(1)由半徑相等可設(shè)∠PAD=∠ADP=α,根據(jù)切線的性質(zhì)得到∠EDP=90°,證明∠BDE=90°-α,由∠ACB=90°,得到∠B=90°﹣α,再根據(jù)“等角對(duì)等邊”即可求解;
(2)過點(diǎn)E作EG⊥BD,則點(diǎn)G為BD的中點(diǎn),根據(jù)等量代換得到∠GED=∠BAC,從而求出tan∠BAC,則cos∠BAC ,sin∠BAC ,根據(jù)銳角三角函數(shù)的定義即可求出AD,DG以及BE;
(3)設(shè)PA=x,根據(jù)(2)可得出(BE+PA)PA=﹣2x2+5x,根據(jù)二次函數(shù)的性質(zhì)即可求解.
解:(1)連接PD,∵PA=PD,
∴設(shè)∠PAD=∠ADP=α,
∵DE是圓的切線,則∠EDP=90°,
∴∠PDA+∠BDE=90°,即α+∠BDE=90°,
∴∠BDE=90°-α
∵∠ACB=90°,
∴∠B=90°﹣α,
∴∠BDE=∠B
∴BE=DE;
(2)過點(diǎn)E作EG⊥BD,則點(diǎn)G為BD的中點(diǎn),
∵∠GED+∠EDB=90°,∠PDA+∠EDB=90°,
∴∠GED=∠PDA,
∴∠GED=∠BAC,
tan∠BAC,則cos∠BAC ,sin∠BAC ,
∵PA=1,AC=4,BC=2,
∴AB=,
∴AD=2PAcos∠BAC ,
DG=BGBD=(AB﹣AD)(2),
BE=DE3,
(3)設(shè)PA=x,
由(2)知:BE=DE=5﹣
則(BE+PA)PA=(5﹣2x+x)x=﹣x2+5x,
∵﹣1<0,故(BE+PA)PA有最大值,
∴當(dāng)x時(shí),有最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,為上一點(diǎn),于點(diǎn),交于點(diǎn),與交于點(diǎn)為延長(zhǎng)線上一點(diǎn),且.
(1)求證:是的切線;
(2)求證:;
(3)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖像交于點(diǎn)、,與軸、軸分別交于點(diǎn)、,作軸于點(diǎn),軸于點(diǎn),過點(diǎn)、分別作,,分別交軸于點(diǎn)、,交于點(diǎn),若四邊形和四邊形的面積和為12,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列二次函數(shù)中有一個(gè)函數(shù)的圖像與x軸有兩個(gè)不同的交點(diǎn),這個(gè)函數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c為正數(shù),若關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,則關(guān)于x的方程a2x2+b2x+c2=0解的情況為( )
A.有兩個(gè)不相等的正根B.有一個(gè)正根,一個(gè)負(fù)根
C.有兩個(gè)不相等的負(fù)根D.不一定有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從兩地同時(shí)出發(fā),沿同一條公路相向行駛,相遇后,甲車?yán)^續(xù)以原速行駛到地,乙車立即以原速原路返回到地,甲、乙兩車距地的路程與各自行駛的時(shí)間之間的關(guān)系如圖所示.
⑴________,________;
⑵求乙車距地的路程關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
⑶當(dāng)甲車到達(dá)地時(shí),求乙車距地的路程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價(jià)格銷售一種成本價(jià)為40元的文化紀(jì)念杯,每星期可售出100只。后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),每只杯子的售價(jià)每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀(jì)念杯要想平均每星期獲利2240元,請(qǐng)回答:
(1)每只杯應(yīng)降價(jià)多少元?
(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該公司應(yīng)該按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)在邊上,把沿翻折后,點(diǎn)落在處.若恰為等腰三角形,則的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com