【題目】聰明好學(xué)的亮亮看到一課外書上有個重要補充:
(角平分線定理)三角形一個內(nèi)角的平分線分對邊所成的兩條線段與這個角的兩鄰邊對應(yīng)成比例.于是他就和其他同學(xué)研究一番,寫出了已知、求證如下:
“已知:如圖1,△ABC中,AD平分∠BAC交BC于點D,求證:”
可是他們依然找不到證明的方法,于是,老師提示:過點B作BE∥AC交AD延長線于點E,于是得到△BDE∽△CDA,從而打開思路.
(Ⅰ)請你按老師的提示或你認為其他可行的方法幫亮亮完成證明.
(Ⅱ)利用角平分線定理解決如下問題:
如圖2,△ABC中,E是BC中點,AD是∠BAC的平分線,EF∥AD交AC于F,AB=7,AC=15,求AF的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小元設(shè)計的“過圓上一點作圓的切線”的尺規(guī)作圖過程.
已知:如圖,⊙O及⊙O上一點P.
求作:過點P的⊙O的切線.
作法:如圖,
①作射線OP;
②在直線OP外任取一點A,以點A為圓心,AP為半徑作⊙A,與射線OP交于另一點B;
③連接并延長BA與⊙A交于點C;
④作直線PC;
則直線PC即為所求.
根據(jù)小元設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴∠BPC=90°(____________)(填推理的依據(jù)).
∴OP⊥PC.
又∵OP是⊙O的半徑,
∴PC是⊙O的切線(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則△DEF的面積為( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB表達式為y=﹣2x+2,交x軸于點A,交y軸于點B.若y軸負半軸上有一點C,且CO=AO.
(1)求點C的坐標(biāo)和直線AC的表達式;
(2)在直線AC上是否存在點D,使以點A、B、D為頂點的三角形與△ABO相似?若存在,請求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是BC的中點,連接DE,過點A作AG⊥ED交DE于點F,交CD于點G.
(1)若BC=4,求AG的長;
(2)連接BF,求證:AB=FB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象有一個交點的縱坐標(biāo)是2.
(Ⅰ)當(dāng)x=4時,求反比例函數(shù)y=的值;
(Ⅱ)當(dāng)﹣2<x<﹣1時,求反比例函數(shù)y=的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,AB=5,BC=4,點D為邊AC上的動點,作菱形DEFG,使點E、F在邊AB上,點G在邊BC上.若這樣的菱形能作出兩個,則AD的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com