【題目】已知:如圖,△MNQ中,MQ≠NQ

1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;

2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:

如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB

【答案】1)作圖見解析;(2)證明書見解析.

【解析】

試題(1)以點N為圓心,以MQ長度為半徑畫弧,以點M為圓心,以NQ長度為半徑畫弧,兩弧交于一點F,則△MNF為所畫三角形.

2)延長DAE,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B =∠E,AB=CE,根據(jù)等量代換可以求得答案.

試題解析:(1)如圖1,以N 為圓心,以MQ 為半徑畫圓弧;以M 為圓心,以NQ 為半徑畫圓弧;兩圓弧的交點即為所求.

2)如圖,延長DAE,使得AE=CB,連結(jié)CE

∵∠ACB +∠CAD =180°∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.

△EAC△BAC中,AECEACCA,∠EAC∠BCN,

∴△AECEAC≌△BCA SAS.∴∠B=∠E,AB=CE.

∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是圓O的切線,切點為AAB是圓O的弦。過點BBC//AD,交圓O于點C,連接AC,過點CCD//AB,交AD于點D。連接AO并延長交BC于點M,交過點C的直線于點P,且BCP=ACD。

1判斷直線PC與圓O的位置關(guān)系,并說明理由:

2 AB=9,BC=6,求PC的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°,B=30°,AB=10,點D是射線CB上的一個動點,ADE是等邊三角形,點FAB的中點,連接EF.

(1)如圖,點D在線段CB上時,

①求證:AEF≌△ADC;

②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;

(2)當∠DAB=15°時,求ADE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,過點DDE⊥AB于點E,點FCD上,CF=AE,連接BF,AF.

(1)求證:四邊形BFDE是矩形;

(2)AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BDAE于點F,延長AE至點C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(定義)如圖1,A,B為直線l同側(cè)的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關(guān)于直線l的“等角點”.

(運用)如圖2,在平面直坐標系xOy中,已知A(2,),B(﹣2,﹣)兩點.

(1)C(4,),D(4,),E(4,)三點中,點   是點A,B關(guān)于直線x=4的等角點;

(2)若直線l垂直于x軸,點P(m,n)是點A,B關(guān)于直線l的等角點,其中m>2,∠APB=α,求證:tan=

(3)若點P是點A,B關(guān)于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當APB=60°時,求b的取值范圍(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A在第一象限,點A,B關(guān)于y軸對稱.

1)若A13),寫出點B的坐標并在直角坐標系中標出.

2)若Aa,b),且△AOB的面積為a2,求點B的坐標(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在南開中學校慶78周年之際,由學生處和美術(shù)教研組共同策劃、組織了“南開中學校園明信片設(shè)計大賽”。獲得此次設(shè)計大賽組織一等獎的、、四個班級一共有75件作品獲獎,已知班參賽作品的獲獎率為30%,班參賽作品的獲獎率為40%。請結(jié)合兩幅統(tǒng)計圖所提供的信息,解決下列問題:

(1)四個班級一共選送了多少件作品參賽,獲獎率最高的班級是哪個班;

(2)請將條形統(tǒng)計圖補充完整;

(3)班的小欣和小怡同學在本次大賽中榮獲個人一等獎,此外兩班各有一名同學榮獲個人一等獎。南開中學校友會準備從這4名同學的作品中任選兩件,制作成新年賀卡送給老校友。請用列表法或畫樹狀圖的方法求出這兩件作品分別來自不同班級,且其中一件是小欣或小怡作品的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若兩個分式的和為為正整數(shù)),則稱這兩個分式互為階分式,例如分式互為“3階分式”.

1)分式 互為“5階分式;

2)設(shè)正數(shù)互為倒數(shù),求證:分式互為“2階分式;

3)若分式互為“1階分式(其中為正數(shù)),求的值.

查看答案和解析>>

同步練習冊答案