6.(1)計(jì)算:(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0
(2)先化簡,再求值:$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$,其中x=-2.

分析 (1)根據(jù)實(shí)數(shù)的運(yùn)算順序,首先計(jì)算乘方和乘法,然后從左到右依次計(jì)算,求出算式(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0的值是多少即可.
(2)先把$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$化簡為最簡分式,再把x=-2代入求值即可.

解答 解:(1)(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0
=9-5-4+1
=1

(2)x=-2時(shí),
$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$
=$\frac{2x(x-1)}{(x+1)(x-1)}$-$\frac{x}{x+1}$
=$\frac{2x}{x+1}$-$\frac{x}{x+1}$
=$\frac{x}{x+1}$
=$\frac{-2}{-2+1}$
=2

點(diǎn)評(píng) (1)此題主要考查了實(shí)數(shù)的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進(jìn)行實(shí)數(shù)運(yùn)算時(shí),和有理數(shù)運(yùn)算一樣,要從高級(jí)到低級(jí),即先算乘方、開方,再算乘除,最后算加減,有括號(hào)的要先算括號(hào)里面的,同級(jí)運(yùn)算要按照從左到右的順序進(jìn)行.另外,有理數(shù)的運(yùn)算律在實(shí)數(shù)范圍內(nèi)仍然適用.
(2)此題還考查了零指數(shù)冪的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:①a0=1(a≠0);②00≠1.
(3)此題還考查了分式的化簡求值,要熟練掌握,解答此題的關(guān)鍵是要明確:一般是先化簡為最簡分式或整式,再代入求值.化簡時(shí)不能跨度太大,而缺少必要的步驟.
(4)此題還考查了負(fù)整數(shù)指數(shù)冪的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:①a-p=$\frac{1}{{a}^{p}}$(a≠0,p為正整數(shù));②計(jì)算負(fù)整數(shù)指數(shù)冪時(shí),一定要根據(jù)負(fù)整數(shù)指數(shù)冪的意義計(jì)算;③當(dāng)?shù)讛?shù)是分?jǐn)?shù)時(shí),只要把分子、分母顛倒,負(fù)指數(shù)就可變?yōu)檎笖?shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.計(jì)算:$\sqrt{5}$•$\sqrt{10}$=5$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在平面直角坐標(biāo)系中,直角△ABC的三個(gè)頂點(diǎn)分別是A(-3,1),B(0,3),C(0,1)
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;
(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,△ABC中,∠A=78°,AB=4,AC=6.將△ABC沿圖示中的虛線剪開,剪下的陰影三角形與原三角形不相似的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,把平行四邊形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,這時(shí)點(diǎn)D落在D1,折痕為EF,若∠BAE=55°,則∠D1AD=55°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.1.45°=87′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.《九章算術(shù)》是東方數(shù)學(xué)思想之源,該書中記載:“今有勾八步,股一十五步,問勾中容圓徑幾何.”其意思為:“今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形內(nèi)切圓的直徑是多少步.”該問題的答案是6步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,直線AO與⊙O交于點(diǎn)E和點(diǎn)D,OB與⊙O交于點(diǎn)F,連接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求證:①直線AB是⊙O的切線;②∠FDC=∠EDC;
(2)求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在△ABC中,中線BE,CD相交于點(diǎn)O,連接DE,下列結(jié)論:
①$\frac{DE}{BC}$=$\frac{1}{2}$;②$\frac{{S}_{△DOE}}{{S}_{△COB}}$=$\frac{1}{2}$;③$\frac{AD}{AB}$=$\frac{OE}{OB}$;④$\frac{{S}_{△ODE}}{{S}_{△ADC}}$=$\frac{1}{3}$
其中正確的個(gè)數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案