【題目】在平面直角坐標(biāo)系中,直線與軸,軸分別交于點(diǎn),,拋物線經(jīng)過(guò)點(diǎn),將點(diǎn)向右平移5個(gè)單位長(zhǎng)度,得到點(diǎn),若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,則的取值范圍__________.
【答案】或或
【解析】
先根據(jù)直線的解析式求出點(diǎn)A,B的坐標(biāo),再求出點(diǎn)C的坐標(biāo),將點(diǎn)A的坐標(biāo)代入拋物線,求出a和b的關(guān)系式為,從而可得拋物線的對(duì)稱(chēng)軸為,則拋物線與x軸的另一個(gè)交點(diǎn)為;需分和兩種情況分析,再根據(jù)拋物線與線段BC恰有一個(gè)公共點(diǎn)建立不等式求解即可.
令,代入直線得:,則點(diǎn)A的坐標(biāo)為
令,代入直線得:,則點(diǎn)B的坐標(biāo)為
將點(diǎn)向右平移5個(gè)單位長(zhǎng)度,得到點(diǎn),則點(diǎn)C的坐標(biāo)為
將代入拋物線得:,即
則拋物線的解析式為,因此其對(duì)稱(chēng)軸為,與x軸的另一個(gè)交點(diǎn)的坐標(biāo)為
由題意得,所以分以下兩種情況討論:
(1)如圖1,當(dāng)時(shí),要使拋物線與線段BC恰有一個(gè)公共點(diǎn)
則當(dāng)時(shí),才能符合題意,即
解得:
(2)如圖2,當(dāng)時(shí),要使拋物線與線段BC恰有一個(gè)公共點(diǎn),又需分兩種情況:
①拋物線的頂點(diǎn)恰好在線段BC上,此時(shí)公共點(diǎn)為拋物線的頂點(diǎn),符合題意
則當(dāng)時(shí),,即
解得:
②拋物線的頂點(diǎn)在線段BC的上方,此時(shí)當(dāng)時(shí),才能符合題意
將代入拋物線得:
解得:
綜上,若拋物線與線段BC恰有一個(gè)公共點(diǎn),a的取值范圍為或或
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)回顧)
我們把連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.
(定理證明)
將下列的定理證明補(bǔ)充完整:
已知:如圖①,在△ABC中,點(diǎn)D、E分別是邊AB、AC中點(diǎn),連結(jié)DE.
求證:
證明:
(定理應(yīng)用)
如圖②,在△ABC中,AB=10,∠ABC=60°,點(diǎn)P、Q分別是邊AC、BC的中點(diǎn),連結(jié)PQ.
(1)線段PQ的長(zhǎng)為 .
(2)以點(diǎn)C為一個(gè)端點(diǎn)作線段CD(CD與AB不平行),連結(jié)AD,取AD的中點(diǎn)M,連結(jié)PM、QM.
①在圖②中補(bǔ)全圖形.
②當(dāng)∠PQM=∠PMQ時(shí),求CD的長(zhǎng).
③在②的條件下,當(dāng)△PQM面積最大時(shí),直接寫(xiě)出∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)P在△ABC內(nèi),且滿(mǎn)足∠APB=∠APC(如下圖),∠APB+∠BAC=180°,
(1)求證:△PAB∽△PCA:
(2)如下圖,如果∠APB=120°,∠ABC=90°求的值;
(3)如圖,當(dāng)∠BAC=45°,△ABC為等腰三角形時(shí),求tan∠PBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖:為測(cè)量一個(gè)圓的半徑,采用了下面的方法:將圓平放在一個(gè)平面上,用一個(gè)含有30°角的三角板和一把無(wú)刻度的直尺,按圖示的方式測(cè)量(此時(shí),⊙O與三角板和直尺分別相切,切點(diǎn)分別為點(diǎn)C、點(diǎn)B),若量得AB=5cm,試求圓的半徑以及的弧長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種雙肩包,已知這種雙肩包的成本價(jià)每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷(xiāo)售量(單位:個(gè))與銷(xiāo)售單價(jià)(單位:元)有如下關(guān)系:()設(shè)這種雙肩包每天的銷(xiāo)售利潤(rùn)為元.
(1)這種雙肩包銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(2)如果物價(jià)部門(mén)規(guī)定這種雙肩包的銷(xiāo)售單價(jià)不高于48元,該商店銷(xiāo)售這種雙肩包每天要獲得300元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校一課外活動(dòng)小組為了解學(xué)生最喜歡的球類(lèi)運(yùn)動(dòng)情況,隨機(jī)抽查本校九年級(jí)的200名學(xué)生,調(diào)查的結(jié)果如圖所示.請(qǐng)根據(jù)該扇形統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)求圖中的x的值;
(2)求最喜歡乒乓球運(yùn)動(dòng)的學(xué)生人數(shù);
(3)若由3名最喜歡籃球運(yùn)動(dòng)的學(xué)生,1名最喜歡乒乓球運(yùn)動(dòng)的學(xué)生,1名最喜歡足球運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng).欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運(yùn)動(dòng)的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地質(zhì)量監(jiān)管部門(mén)對(duì)轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類(lèi)產(chǎn)品進(jìn)行檢查,分別隨機(jī)抽取了50件產(chǎn)品并對(duì)某一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)做檢測(cè),獲得了它們的質(zhì)量指標(biāo)值s,并對(duì)樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:
質(zhì)量指標(biāo)值 | |||||
等級(jí) | 次品 | 二等品 | 一等品 | 二等品 | 次品 |
說(shuō)明:等級(jí)是一等品,二等品為質(zhì)量合格(其中等級(jí)是一等品為質(zhì)量?jī)?yōu)秀).
等級(jí)是次品為質(zhì)量不合格.
b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計(jì)表如下(不完整).
c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.
甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
m | ||
32 | n | |
0.12 | ||
0 | 0.00 | |
合計(jì) | 50 | 1.00 |
乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖
d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 | 方差 | |
甲企業(yè) | 31.92 | 32.5 | 34 | 15 | 11.87 |
乙企業(yè) | 31.92 | 31.5 | 31 | 20 | 15.34 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)m的值為_(kāi)_______,n的值為_(kāi)_______.
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計(jì)該產(chǎn)品質(zhì)量合格的概率為_(kāi)_______;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬(wàn)件,估計(jì)質(zhì)量?jī)?yōu)秀的有________萬(wàn)件;
(3)根據(jù)圖表數(shù)據(jù),你認(rèn)為_(kāi)_______企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個(gè)角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解鹽瀆街道~歲居民最喜歡的春節(jié)晚會(huì)節(jié)目類(lèi)型,某興趣小組對(duì)街道內(nèi)該年齡段部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖. 請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形的圓心角;
(3)該街道~歲的居民約人,估算這些人中最喜歡歌舞類(lèi)節(jié)目的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com