如圖,拋物線與x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結(jié)BE交MN于點F.已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標;
(2)求△EMF與△BNF的面積之比.
(1),(1,4);(2).
【解析】
試題分析:(1)直接將(﹣1,0)代入求出即可,再利用配方法求出頂點坐標.
(2)利用EM∥BN,則△EMF∽△BNF,進而求出△EMF與△BNE的面積之比.
試題解析:【解析】
(1)∵點A在拋物線上,
∴,解得:c=3,
∴拋物線的解析式為.
∵,
∴拋物線的頂點M(1,4);
(2)∵A(﹣1,0),拋物線的對稱軸為直線x=1,∴點B(3,0).
∴EM=1,BN=2.
∵EM∥BN,∴△EMF∽△BNF.∴.
考點:1.拋物線與x軸的交點問題;2.二次函數(shù)的性質(zhì);3.待定系數(shù)法的應(yīng)用;4.曲線上點的坐標與方程的關(guān)系;5.相似三角形的判定和性質(zhì).
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(湖北宜昌卷)數(shù)學(解析版) 題型:解答題
下表中,y是x的一次函數(shù).
x | 2 | 1 | 2 |
| 5 |
y | 6 | 3 |
| 12 | 15 |
(1)求該函數(shù)的表達式,并補全表格;
(2)已知該函數(shù)圖象上一點M(1,-3)也在反比例函數(shù)圖象上,求這兩個函數(shù)圖象的另一交點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江舟山卷)數(shù)學(解析版) 題型:選擇題
一名射擊愛好者5次射擊的中靶環(huán)數(shù)如下:6,7,9,8,9.這5個數(shù)據(jù)的中位數(shù)是( )
(A)6 (B)7 (C)8 (D)9
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江湖州卷)數(shù)學(解析版) 題型:選擇題
如圖,已知正方形ABCD,點E是邊AB的中點,點O是線段AE上的一個動點(不與A、E重合),以O(shè)為圓心,OB為半徑的圓與邊AD相交于點M,過點M作⊙O的切線交DC于點N,連接OM、ON、BM、BN.記△MNO、△AOM、△DMN的面積分別為S1、S2、S3,則下列結(jié)論不一定成立的是( )
A.S1>S2+S3 B.△AOM∽△DMN C.∠MBN=45° D.MN=AM+CN
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江湖州卷)數(shù)學(解析版) 題型:選擇題
計算2x(3x2+1),正確的結(jié)果是( )
A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江溫州卷)數(shù)學(解析版) 題型:選擇題
如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點重合,在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)中,k的值的變化情況是( )
A.一直增大 B.一直減小 C.先增大后減小 D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學(解析版) 題型:填空題
設(shè)拋物線過A(0,2),B(4,3),C三點,其中點C在直線上,且點C到拋物線對稱軸的距離等于1,則拋物線的函數(shù)解析式為 .
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江西南昌卷)數(shù)學(解析版) 題型:解答題
如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為 ;拋物線y=4x2對應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準蝶形記為F1.
①求拋物線y2的表達式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點橫坐標為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達式;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com