考點:二次根式的性質與化簡
專題:
分析:由n是正整數(shù),
為有理數(shù)當且僅當(n+7)•
=
為有理數(shù).而(9n-1)(n+7)是整數(shù),其平方根若為有理數(shù)則必為整數(shù).
即有1024=(9n+31)
2-9m
2=(9n+31+3m)(9n+31-3m).9n+31+3m是1024的約數(shù).n是正整數(shù),m是非負整數(shù),故9n+31+3m是大于31的整數(shù).此外,易見9n+3m+31除以3余1.滿足條件的1024的約數(shù)有64,256,1024.再求即可.
解答:解:由n是正整數(shù),
為有理數(shù)當且僅當(n+7)•
=
為有理數(shù).
而(9n-1)(n+7)是整數(shù),其平方根若為有理數(shù)則必為整數(shù).
設非負整數(shù)m滿足m
2=(9n-1)(n+7)=9n
2+62n-7.
則9m
2=(9n)
2+62(9n)-63=(9n+31)
2-31
2-63=(9n+31)
2-1024.
即有1024=(9n+31)
2-9m
2=(9n+31+3m)(9n+31-3m).
9n+31+3m是1024的約數(shù).
n是正整數(shù),m是非負整數(shù),故9n+31+3m是大于31的整數(shù).
此外,易見9n+3m+31除以3余1.
滿足條件的1024的約數(shù)有64,256,1024.
若9n+31+3m=64,有9n+31-3m=
=16,解得n=1.
若9n+31+3m=256,有9n+31-3m=
=4,解得n=11.
若9n+31+3m=1024,有9n+31-3m=
=1,解不為整數(shù).
可驗證n=1時
=1,n=11時
=
為有理數(shù).
故滿足條件的正整數(shù)為1,11.
點評:本題考查了二次根式的性質與化簡.關鍵是得出9n+31+3m是1024的約數(shù).n是正整數(shù),m是非負整數(shù),故9n+31+3m是大于31的整數(shù).