28、如圖,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒(méi)有帶量角器,只帶了一副三角尺,于是他想了這樣一個(gè)辦法:首先連接CF,再找出CF的中點(diǎn)O,然后連接EO并延長(zhǎng)EO和直線(xiàn)AB相交于點(diǎn)B,經(jīng)過(guò)測(cè)量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF.以下是他的想法,請(qǐng)你填上根據(jù).
小華是這樣想的:因?yàn)镃F和BE相交于點(diǎn)O,
根據(jù)
對(duì)頂角相等
得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知EO=BO,
根據(jù)
兩邊對(duì)應(yīng)相等且?jiàn)A角相等的兩三角形全等
得出△COB≌△FOE,
根據(jù)
全等三角形對(duì)應(yīng)邊相等
得出BC=EF,
根據(jù)
全等三角形對(duì)應(yīng)角相等
得出∠BCO=∠F,
既然∠BCO=∠F根據(jù)
內(nèi)錯(cuò)角相等,兩直線(xiàn)平行
、得出AB∥DF,
既然AB∥DF,根據(jù)
兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)
.得出∠ACE和∠DEC互補(bǔ).