【題目】如圖,在矩形ABCD中,P是BC上一點(diǎn),E是AB上一點(diǎn),PD平分∠APC,PE⊥PD,連接DE交AP于F,在以下判斷中,不正確的是( )

A.當(dāng)P為BC中點(diǎn),△APD是等邊三角形
B.當(dāng)△ADE∽△BPE時(shí),P為BC中點(diǎn)
C.當(dāng)AE=2BE時(shí),AP⊥DE
D.當(dāng)△APD是等邊三角形時(shí),BE+CD=DE

【答案】B
【解析】解:A、∵四邊形ABCD是矩形,
∴AB=CD,∠A=∠B,
∵點(diǎn)P是BC的中點(diǎn),
∴PB=PC,
在△APB和△DPC中, ,
∴△APB≌△DPC,
∴PA=PD,∠APB=∠DPC,
∵PD平分∠APC,
∴∠APD=∠CPD,
∴∠APB=∠APD=∠CPD,
∵∠APB+∠APD+∠CPD=180°,
∴∠APD=60°,
∵PA=PD,
∴△APD是等邊三角形;
∴A正確,故A不符合題意;
C、∵PD⊥PE,
∴∠BPE+∠DPC=90°,∠APE+∠APD=90°,
∵∠APD=∠CPD,
∴∠APE=∠BPE,

∵AE=2BE,

在Rt△ABP中,sin∠BAP= ,
∴∠BAP=30°,
∴∠APB=60°,
∴∠BPE=∠APE=30°=∠BAP,
∴AE=PE,
∵EA⊥AD,EP⊥PD,
∴∠ADE=∠PDE,
在△ADE和△PDE中, ,
∴△ADE≌△PDE,
∴∠AED=∠PED,
∵AE=PE,
∴DE⊥AP,
∴C正確,故C不符合題意;
D、∵△APD是等邊三角形,
∴AP=DP,∠APD=60°,
∴∠CPD=60°,
∴∠APB=60°,
∴∠BPE=∠APE=∠PAB=30°
∴AE=PE
設(shè)BE=a,
在Rt△PBE中,BP= BE= a,PE=2a,
∴AE=2a,
∴CD=AB=BE+AE=3a,
易證△APB≌△DPC,
∴PB=PC,
∴AD=BC=2BP=2 a,
在Rt△ADE中,根據(jù)勾股定理,得,DE= =4a,
∵BE+CD=a+3a=4a=DE,
∴D正確,故D不符合題意;
∴符合題意的只有B.
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識(shí),掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是( )

A. 平面內(nèi),沒(méi)有公共點(diǎn)的兩條線段平行

B. 平面內(nèi),沒(méi)有公共點(diǎn)的兩條射線平行

C. 沒(méi)有公共點(diǎn)的兩條直線互相平行

D. 互相平行的兩條直線沒(méi)有公共點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過(guò)點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.
(1)求該二次函數(shù)的對(duì)稱軸方程;
(2)過(guò)動(dòng)點(diǎn)C(0,n)作直線l⊥y軸. ①當(dāng)直線l與拋物線只有一個(gè)公共點(diǎn)時(shí),求n與m的函數(shù)關(guān)系;
②若拋物線與x軸有兩個(gè)交點(diǎn),將拋物線在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.當(dāng)n=7時(shí),直線l與新的圖象恰好有三個(gè)公共點(diǎn),求此時(shí)m的值;
(3)若對(duì)于每一個(gè)給定的x的值,它所對(duì)應(yīng)的函數(shù)值都不小于1,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R.對(duì)于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足r≤d≤R的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn). 在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣ ,﹣1),C( ,﹣1).

(1)已知點(diǎn)D(2,2),E( ,1),F(xiàn)(﹣ ,﹣1).在D,E,F(xiàn)中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是;
(2)如圖1,過(guò)點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫出答案,不需過(guò)程)
(3)如圖2,點(diǎn)Q為直線y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為 .當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫出所有符合題意的t的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2開(kāi)始,連續(xù)的偶數(shù)相加,它們和的情況如表:

加數(shù)的個(gè)數(shù)n

S

1

2=1×2

2

2+4=6=2×3

3

2+4+6=15=3×4

4

2+4+6+8=20=4×5

5

2+4+6+8+10=30=5×6


(1)根據(jù)表中的規(guī)律猜想:用n的式子表示S的公式為:S=2+4+6+8+…+2n=;
(2)如下數(shù)表是由從1開(kāi)始的連續(xù)自然數(shù)組成,觀察規(guī)律:

①第n行的第一個(gè)數(shù)可用含n的式子表示為;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是某新建廠區(qū)示意圖,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,現(xiàn)在要在廠區(qū)四周建圍墻,求圍墻的長(zhǎng)度有多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張對(duì)邊互相平行的紙條,折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論正確的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點(diǎn)C是BM延長(zhǎng)線上一點(diǎn),連接AC.
(1)如圖1,若AB=3 ,BC=5,求AC的長(zhǎng);
(2)如圖2,點(diǎn)D是線段AM上一點(diǎn),MD=MC,點(diǎn)E是△ABC外一點(diǎn),EC=AC,連接ED并延長(zhǎng)交BC于點(diǎn)F,且點(diǎn)F是線段BC的中點(diǎn),求證:∠BDF=∠CEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案