如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(-2,2),點(diǎn)B的坐標(biāo)為(6,6),拋物線經(jīng)過(guò)A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連接ON、BN,當(dāng)點(diǎn)F在線段OB上運(yùn)動(dòng)時(shí),求△BON 面積的最大值,并求出此時(shí)點(diǎn)N的坐標(biāo);
(3)當(dāng)△BON面積最大時(shí),連接AN,若點(diǎn)P坐標(biāo)平面內(nèi),并使得△BOP∽△OAN(點(diǎn)B、O、P分別與點(diǎn)O、A、N對(duì)應(yīng)),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
分析:(1)設(shè)拋物線解析式為y=ax2+bx+c,將A(-2,2),B(6,6),O(0,0)三點(diǎn)坐標(biāo)代入,列方程組求a、b、c的值即可;
(2)依題意,得直線OB的解析式為y=x,設(shè)過(guò)N點(diǎn)且與直線OB平行的直線解析式為y=x+m,與拋物線解析式聯(lián)立,得出關(guān)于x的一元二次方程,當(dāng)△=0時(shí),△BON面積最大,由此可求m的值及N點(diǎn)的坐標(biāo);
(3)根據(jù)三角形相似的性質(zhì)得到BO:OA=OP:AN=BP:ON,然后根據(jù)勾股定理分別計(jì)算出BO=6
2
,OA=2
2
,AN=
5
17
4
,ON=
3
17
4
,這樣可求出OP=
5
17
4
,BP=
9
17
4
,設(shè)P點(diǎn)坐標(biāo)為(x,y),再利用勾股定理得到關(guān)于x,y的方程組,解方程組即可.
解答:解:(1)設(shè)拋物線解析式為y=ax2+bx+c,
將A(-2,2),B(6,6),O(0,0)三點(diǎn)坐標(biāo)代入,得
4a-2b+c=2
36a+6b+c=6
c=0
,
解得
a=
1
4
b=-
1
2
c=0
,
∴y=
1
4
x2-
1
2
x,

(2)依題意,得直線OB的解析式為y=x,設(shè)過(guò)N點(diǎn)且與直線OB平行的直線解析式為y=x+m,
聯(lián)立
y=
1
4
x2 -
1
2
x
y=x+m
,得x2-6x-4m=0,
當(dāng)△=36+16m=0時(shí),過(guò)N點(diǎn)與OB平行的直線與拋物線有唯一的公共點(diǎn),則點(diǎn)N到OB的距離最大,所以△BON面積最大,
解得m=-
9
4
,x=3,y=
3
4
,即N(3,
3
4
);
此時(shí)△BON面積=
1
2
×6×6-
1
2
3
4
+6)×3-
1
2
×
3
4
×3=
27
4
;

(3)過(guò)點(diǎn)A作AS⊥GQ于S,
∵A(-2,2),B(6,6),N(3,
3
4
),
∵∠AOE=∠OAS=∠BOH=45°,
OG=3,NG=
3
4
,NS=
5
4
,AS=5,
在Rt△SAN和Rt△NOG中,
∴tan∠SAN=tan∠NOG=
1
4
,
∴∠SAN=∠NOG,
∴∠OAS-∠SAN=∠BOG-∠NOG,
∴∠OAN=∠BON,
∴ON的延長(zhǎng)線上存在一點(diǎn)P,使得△BOP∽△OAN,
∵A(-2,2),N(3,
3
4
),
∵△BOP與△OAN相似(點(diǎn)B、O、P分別與點(diǎn)O、A、N對(duì)應(yīng)),即△BOP∽△OAN,
∴BO:OA=OP:AN=BP:ON
又∵A(-2,2),N(3,
3
4
),B(6,6),
∴BO=6
2
,OA=2
2
,AN=
5
17
4
,ON=
3
17
4

∴OP=
15
17
4
,BP=
9
17
4
,
設(shè)P點(diǎn)坐標(biāo)為(4x,x),
∴16x2+x2=(
15
17
4
2,
解得x=
15
4
,4x=15,
∵P、P′關(guān)于直線y=x軸對(duì)稱,
∴P點(diǎn)坐標(biāo)為(15,
15
4
)或(
15
4
,15).
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用.根據(jù)已知條件求直線、拋物線解析式,再根據(jù)圖形特點(diǎn),將問(wèn)題轉(zhuǎn)化為列方程組,利用代數(shù)方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖,過(guò)點(diǎn)D作CD的垂線,過(guò)點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH

(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案