【題目】“一號龍卷風(fēng)”給小島O造成了較大的破壞,救災(zāi)部門迅速組織力量,從倉儲D處調(diào)集救援物資,計劃先用汽車運到與D在同一直線上的C、B、A三個碼頭中的一處,再用貨船運到小島O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽車行駛的速度為50km/時,貨船航行的速度為25km/時,問這批物資在哪個碼頭裝船,最早運抵小島O?(在物資搬運能力上每個碼頭工作效率相同,參考數(shù)據(jù): ≈1.4, ≈1.7).

【答案】解:∵∠OCA=∠D+∠COD,
∴∠COD=30°﹣15°=15°,
∴CO=CD=20,
在Rt△OCA中,∵∠OCA=30°,
∴OA= OC=10,CA= OA=10 ≈17,
在Rt△OBA中,∵∠OBA=45°,
∴BA=OA=10,OB= OA≈14,
∴BC=17﹣10=7,
當(dāng)這批物資在C碼頭裝船,運抵小島O時,所用時間= + =1.2(小時);
當(dāng)這批物資在B碼頭裝船,運抵小島O時,所用時間= + =1.1(小時);
當(dāng)這批物資在A碼頭裝船,運抵小島O時,所用時間= + =1.14(小時);
所以這批物資在B碼頭裝船,最早運抵小島O.
【解析】本題考查了解直角三角形:將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題).利用三角形外角性質(zhì)計算出∠COD=15°,則CO=CD=20,在Rt△OCA中利用含30度的直角三角形三邊的關(guān)系計算出OA= OC=10,CA= OA≈17,在Rt△OBA中利用等腰直角三角形的性質(zhì)計算出BA=OA=10,OB= OA≈14,則BC=7,然后根據(jù)速度公式分別計算出在三個碼頭裝船,運抵小島所需的時間,再比較時間的大小進行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( )

A.2對
B.3對
C.4對
D.5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.

(1)在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;
(2)在圖2中畫出線段AB的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC、△DCE、△FEG、△HGI是4個全等的等腰三角形,底邊BC、CE、EG、GI在同一直線上,且AB=2,BC=1,連接AI,交FG于點Q,則QI=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c(a≠0)有一個根為﹣
其中正確的結(jié)論個數(shù)有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校音樂決定圍繞在“舞蹈、樂器、聲樂、戲曲、其他活動”項目中,你最喜歡哪一項活動(每人只限一項)的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:

(1)在這次調(diào)查中,一共抽查了名學(xué)生,其中喜歡“舞蹈”活動項目的人數(shù)占抽查總?cè)藬?shù)的百分比為 . 扇形統(tǒng)計圖中喜歡“戲曲”部分扇形的圓心角為度.
(2)請你補全條形統(tǒng)計圖.
(3)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y= 的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果SBAF=4SDFO , 求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB為⊙O的直徑.動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以3cm/s的速度運動,P、Q兩點同時出發(fā),當(dāng)其中一點到達端點時,另一點也隨之停止運動.設(shè)運動時間為t,求:

(1)t分別為何值時,四邊形PQCD為平行四邊形、等腰梯形?
(2)t分別為何值時,直線PQ與⊙O相切、相離、相交?

查看答案和解析>>

同步練習(xí)冊答案