【題目】用反證法證明命題在直角三角形中,至少有一個銳角不大于45°”時,首先應假設這個直角三角形中(  )

A. 兩個銳角都大于45°B. 兩個銳角都小于45

C. 兩個銳角都不大于45°D. 兩個銳角都等于45°

【答案】A

【解析】

用反證法證明命題的真假,應先按符合題設的條件,假設題設成立,再判斷得出的結(jié)論是否成立即可.

用反證法證明命題在直角三角形中,至少有一個銳角不大于45°”時,

應先假設兩個銳角都大于45°

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某儲運站現(xiàn)有甲種貨物1530噸,乙種貨物1150噸,安排用一列貨車將這批貨物運往青島,這列貨車可掛A,B兩種不同規(guī)格的貨廂50節(jié).已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,按此要求安排A,B兩種貨廂的節(jié)數(shù),有哪幾種運輸方案?請設計出運輸方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的菱形ABCD中,動點M從點A出發(fā),沿A→B→C向終點C運動,連接DM交AC于點N.

(1)如圖1,當點M在AB邊上時,連接BN.求證:△ABN ≌△ADN;

(2)如圖2,若∠ABC = 90°,記點M運動所經(jīng)過的路程為x(1≤x≤2)試問:x為何值時,△ADN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.

(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.

①求證:△OCP∽△PDA;

②若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)若圖1中的點P恰好是CD邊的中點,求∠OAB的度數(shù);

(3)如圖2,在(1)的條件下,擦去折痕AO,線段OP,連結(jié)BP,動點M在線段AP⊥(點M與點F、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x24x60經(jīng)過配方可變形為( 。

A. x2210B. x+2210C. x426D. x222

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是(  )

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,解答下列問題:3+32+33+34+…+32017的末位數(shù)字是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段話,并解決后面的問題.

觀察下面一列數(shù):1,2,4,8,……我們發(fā)現(xiàn),這列數(shù)從第二項起,每一項與它前一項的比值都是2.我們把這樣的一列數(shù)叫做等比數(shù)列,這個共同的比值叫做等比數(shù)列的公比.

(1)等比數(shù)列5,-10,20,……的第4項是_____________;

(2)如果一列數(shù)1, 2, 3,……是等比數(shù)列,且公比是q,那么根據(jù)上述規(guī)定有, ,……因此,可以得到2= 1q, 3= 2q= 1q·q= 1q2 4= 3q= 1q2·q= 1q3,……則n=____________;(用含1與q的代數(shù)式表示)

(3)一個等比數(shù)列的第2項是6,第3項是-18,求它的第1項和第4項.

查看答案和解析>>

同步練習冊答案