(2009•蘇州模擬)如圖,已知直角梯形紙片OABC中,兩底邊AO=5,BC=4,垂直于底的腰CO=.點(diǎn)T在線段AO上(不與線段端點(diǎn)重合),將紙片折疊,使點(diǎn)A落在射線AB上(記為點(diǎn)A′,折痕經(jīng)過點(diǎn)T,折痕TP與射線AB交于點(diǎn)P,設(shè)OT=t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù);
(2)求當(dāng)點(diǎn)A′在線段AB上時(shí),S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)紙片重疊部分的圖形是四邊形時(shí),求t的取值范圍;
(4)S存在最大值嗎?若存在,求出這個(gè)最大值,并求此時(shí)t的值;若不存在,請(qǐng)說明理由.

【答案】分析:(1)可通過構(gòu)建直角三角形來求解.過B作AO的垂線那么得出的銳角的正切值就應(yīng)該是上下底的差除以O(shè)C的長,正好可得出這個(gè)銳角應(yīng)是30°,那么∠BAT的度數(shù)就應(yīng)該是60°;
(2)由(1)得出的∠BAO的60°,以及折疊得到的AT=A′T,那么三角形A′AT是等邊三角形,且三邊長均為5-t.求面積就要有底邊和高,我們可以AA′為高,那么PT就是高,AA′=5-t,那么關(guān)鍵是PT的值,已知了∠BAT的度數(shù),我們可以用AT的長以及∠BAT的正弦函數(shù)表示出PT的長,由此可根據(jù)三角形的面積公式得出關(guān)于S,t的函數(shù)關(guān)系式;
(3)當(dāng)重疊部分是四邊形時(shí),那么此時(shí)A′應(yīng)該在AB的延長線上,那么此時(shí)AA′的最小值應(yīng)該是AB的長即2,最大的值應(yīng)該是當(dāng)P與B重合時(shí)AA′的值即4,由于三角形ATA′是個(gè)等邊三角形,那么AT的取值范圍就是2<AT<4,那么t的取值就應(yīng)是1<t<3;
(4)可分成三種情況進(jìn)行討論:
①當(dāng)A′在AB上時(shí),即當(dāng)3≤t<5時(shí),可根據(jù)(2)的函數(shù)來求出此時(shí)S的最大值.
②當(dāng)A′在AB延長線上但P在AB上時(shí),即當(dāng)1≤t<3時(shí),此時(shí)重合部分的面積=三角形AA′T的面積-上面的小三角形的面積,根據(jù)AT和AB的長,我們可得出A′B的長,然后按(2)的方法即可得出上面的小三角形的面積,也就可以求出重合部分的面積;
③當(dāng)A′在AB延長線上且P也在AB延長線上時(shí),即當(dāng)0<t<1時(shí),重合部分的面積就是三角形EFT的面積(其中E是TA′與CB的交點(diǎn),F(xiàn)是TA與CB的交點(diǎn))那么關(guān)鍵是求出BF,BE的值,知道了AT的長,也就知道了AP、A′P的長,根據(jù)AB=2我們不難得出BP的長,有了BP的長就可以求出A′B、BE的長,在直角三角形BPE中,可根據(jù)∠PBF的度數(shù),和BP的長,來表示出BF的長,這樣我們就能表示出EF的長了,又知道EF邊上的高是OC的長,因此可根據(jù)三角形的面積來求出S的值.
然后綜合三種情況判斷出是否有S的最大值.
解答:解:(1)過點(diǎn)B作BE⊥OA,垂足為E,可得AE=OA-OE=1,tanA=,
∴∠OAB=60°;(2分)
(2)當(dāng)點(diǎn)A在線段AB上時(shí),
∵∠OAB=60°,TA=TA′,
∴△A′TA是等邊三角形,且TP⊥AB,TA=5-t,
∴S△ATP=S△ATA=(5-t)2=(5-t)2,(3≤t<5);
(3)當(dāng)紙片重疊部分的圖形是四邊形時(shí),因△A′TA是等邊三角形,所以2<AT<4,從而1<t<3;
(4)S存在最大值.
①當(dāng)3≤t<5時(shí),S=(5-t)2,在對(duì)稱軸t=5的左邊,S的值隨t的增大而減小,當(dāng)t=3時(shí),S的值最大是;(8分)

②當(dāng)1≤t<3時(shí),重疊部分的面積S=(5-t)2(3-t)2=(t-1)2+;
當(dāng)t=1時(shí),S有最大值為;

③當(dāng)0<t<1時(shí),即當(dāng)點(diǎn)A′和點(diǎn)P都在線段AB的延長線上(其中E是TA′與CB的交點(diǎn),F(xiàn)是TA與CB的交點(diǎn)),
此時(shí)重疊部分的面積是三角形EFT的面積,AP=AT=,BP=AP-AB=,
AB=AP+BP=+=3-t,因?yàn)槿切蜛BE是等邊三角形,因此,
BE=AB=3-t,在直角三角形BPF中,PF=2BP=1-t,因此EF=BE-BF=3-t-(1-t)=2,
因此S=×2×=

點(diǎn)評(píng):本題主要考查了直角梯形,等邊三角形的性質(zhì)以及二次函數(shù)的應(yīng)用等知識(shí)點(diǎn),弄清楚等邊三角形中各邊的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年江蘇省鹽城市建湖縣實(shí)驗(yàn)初中一模試卷(解析版) 題型:填空題

(2009•蘇州模擬)在直角坐標(biāo)系中有四個(gè)點(diǎn)A(-6,3),B(-2,5),C(0,m),D(n,0),當(dāng)四邊形ABCD周長最短時(shí),則m+n=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市工業(yè)園區(qū)中考數(shù)學(xué)模擬調(diào)研統(tǒng)測卷(解析版) 題型:填空題

(2009•蘇州模擬)拋物線y=(x-2)2+1的頂點(diǎn)坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市工業(yè)園區(qū)中考數(shù)學(xué)模擬調(diào)研統(tǒng)測卷(解析版) 題型:選擇題

(2009•蘇州模擬)已知點(diǎn)(2,)是反比例函數(shù)y=圖象上點(diǎn),則此函數(shù)圖象必經(jīng)過點(diǎn)( )
A.(3,-5)
B.(5,-3)
C.(-3,5)
D.(3,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市高新區(qū)中考數(shù)學(xué)模擬調(diào)研統(tǒng)測卷(解析版) 題型:填空題

(2009•蘇州模擬)在直角坐標(biāo)系中有四個(gè)點(diǎn)A(-6,3),B(-2,5),C(0,m),D(n,0),當(dāng)四邊形ABCD周長最短時(shí),則m+n=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省六盤水市盤縣響水中學(xué)中考數(shù)學(xué)模擬密卷(一)(解析版) 題型:填空題

(2009•蘇州模擬)在直角坐標(biāo)系中,O為原點(diǎn),已知A(1,1),在坐標(biāo)軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P有    個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案