分析 (1)由△GBO∽△DBE得BO•BD=BG•BE,由△ABO∽△DBA得BO•BD=•AB2,由此即可證明.
(2)由△ABG∽△EBA得∠BGA=∠BAE=90即可證明.
解答 (1)證明:∵四邊形ABCD是正方形,
∴AC⊥BD,∠DAB=90°,∠ADB=∠BDC=45°,
∵∠FGE=∠BGO=45°,
∴∠BGO=∠BDE,∵∠GBO=∠EBD,
∴△GBO∽△DBE,
∴$\frac{BG}{BD}=\frac{BO}{BE}$,
∴BO•BD=BG•BE,
∵∠ABO=∠ABD,∠BOA=∠BAD=90°,
∴△ABO∽△DBA,
∴$\frac{BO}{BA}=\frac{BA}{BD}$,
∴BO•BD=•AB2,
∴AB2=BG•BE.
(2)結(jié)論:AG⊥BE,理由:證明:∵AB2=BG•BE,
∴$\frac{AB}{BE}=\frac{BG}{AB}$,∵∠ABG=∠ABE,
∴△ABG∽△EBA,
∴∠BGA=∠BAE=90°,
∴AG⊥BE.
點(diǎn)評(píng) 本題考查相似三角形的判定和性質(zhì)、正方形的性質(zhì),解決問題的關(guān)鍵是尋找相似三角形,轉(zhuǎn)化為邊的關(guān)系,本題需要兩次相似三角形,有點(diǎn)難度,本題還提供了一種證明直角的思路,就是利用相似三角形的對(duì)應(yīng)角相等證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com