18、正方形是特殊的平行四邊形,請(qǐng)寫(xiě)出一條正方形具有而平行四邊形不具有的性質(zhì):
一組鄰邊相等(答案不唯一)
分析:根據(jù)正方形的性質(zhì)可選一條正方形具有而平行四邊形不具有的性質(zhì).此題答案不唯一.
解答:解:根據(jù)正方形的性質(zhì)可知,正方形具有而平行四邊形不具有的性質(zhì)有:(1)一組鄰邊相;(2)有一個(gè)角是直角;(3)對(duì)角線相等;(4)對(duì)角線互相垂直;(5)一條對(duì)角線平分一組對(duì)角.(任寫(xiě)一條即可)
點(diǎn)評(píng):本題要熟記正方形與平行四邊形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對(duì)稱軸EF折疊(如圖②).通過(guò)折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫(huà)出折痕;
(3)請(qǐng)你在圖④的方格紙中畫(huà)出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

四巧板也叫”T字之謎”,是一種類(lèi)似七巧板的智力玩具,其中有大小不同的直角梯形各一塊,等腰直角三角形一塊,凹五邊形一塊.圖1中所示的是一種特殊的四角板,它每塊的頂點(diǎn)都落在小正方形的格點(diǎn)上.
(1)請(qǐng)你通過(guò)平移、翻折、旋轉(zhuǎn)將這四塊拼塊在圖2中無(wú)縫隙、不重疊地拼成兩個(gè)形狀筆筒的特殊四邊形(長(zhǎng)方形、平行四邊形、梯形),要求:拼每個(gè)四邊形時(shí),四塊拼塊都用上且各自只能使用一次;
(2)這套特殊的四巧板中,四個(gè)拼塊的面積之和為
42
42

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大九年級(jí)版 2009-2010學(xué)年 第7期 總第163期 北師大版 題型:022

由于矩形、菱形、正方形都是平行四邊形,故都具有________的性質(zhì),但它們作為一種特殊的平行四邊形,又具有各自的特征:

(1)矩形:對(duì)邊________,四個(gè)角________,兩條對(duì)角線________;

(2)菱形:對(duì)邊平行,四條邊________,對(duì)角________,兩條對(duì)角線________,每條對(duì)角線________;

(3)正方形:對(duì)邊平行,四邊________,四個(gè)角________,兩條對(duì)角線________,每條對(duì)角線________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對(duì)稱軸EF折疊(如圖②).通過(guò)折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫(huà)出折痕;
(3)請(qǐng)你在圖④的方格紙中畫(huà)出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省連云港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•連云港)操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對(duì)稱軸EF折疊(如圖②).通過(guò)折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫(huà)出折痕;
(3)請(qǐng)你在圖④的方格紙中畫(huà)出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

同步練習(xí)冊(cè)答案