【題目】陽光市場某個體商戶購進某種電子產品,每個進價是50元.調查發(fā)現(xiàn),當售價是80元時,平均一周可賣出160個,而當售價每降低2元時,平均一周可多賣出20個.若設每個電子產品降價x元,
(1)根據(jù)題意,填表:
進價(元) | 售價(元) | 每件利潤(元) | 銷量(個) | 一周總利潤(元) | |
降價前 | 50 | 80 | 30 | 160 | |
降價后 | 50 |
(2)若商戶計劃每周盈利5200元,且盡量減少庫存,則應降價多少元?
科目:初中數(shù)學 來源: 題型:
【題目】為判斷命題“有三條邊相等且一組對角相等的四邊形是菱形”的真假,數(shù)學課上,老師給出菱形ABCD如圖1,并作出了一個四邊形ABC′D.具體作圖過程如下:
如圖2,在菱形ABCD中,
①連接BD,以點B為圓心,以BD的長為半徑作圓弧,交CD于點P;
②分別以B、D為圓心,以BC、PC的長為半徑作圓弧,兩弧交于點C′.
③連接BC′、DC′,得四邊形ABC′D.
依據(jù)上述作圖過程,解決以下問題:
(1)求證:∠A=∠C′;AD=BC′.
(2)根據(jù)作圖過程和(1)中的結論,說明命題“有三條邊相等且有一組對頂角相等的四邊形是菱形”是 命題.(填寫“真”或“假”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操場上有三根測桿AB,MN和XY,MN=XY,其中測桿AB在太陽光下某一時刻的影子為BC(如圖中粗線).
(1)畫出測桿MN在同一時刻的影子NP(用粗線表示),并簡述畫法;
(2)若在同一時刻測桿XY的影子的頂端恰好落在點B處,畫出測桿XY所在的位置(用實線表示),并簡述畫法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個整數(shù),將其末三位截去,這個末三位數(shù)與余下的數(shù)的7倍的差能被19整除,則這個數(shù)能被19整除,否則不能被19整除,能被19整除的我們稱之為“靈異數(shù)”.
如46379,由,能被19整除,能被19整除,是“靈異數(shù)”.
請用上述規(guī)則判斷52478和9115是否為“靈異數(shù)”;
有一個首位數(shù)字是1的五位正整數(shù),它的個位數(shù)字不為0且是千位數(shù)字的2倍,十位和百位上的數(shù)字之和為8,若這個數(shù)恰好是“靈異數(shù)”,請求出這個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解答問題.
材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(﹣3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面積為1.”
問題:
(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);
(2)猜想四邊形Pn﹣1PnPn+1Pn+2的面積,并說明理由(利用圖2);
(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn﹣1PnPn+1Pn+2的面積(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,OA在x軸的負半軸上,OC在y軸的正半軸上.
Ⅰ若,.
如圖1,將矩形OABC繞點O順時針方向旋轉得到矩形,當點A的對應點落在BC邊上時,求點的坐標;
如圖,將矩形OABC繞點O順時針方向旋得到矩形,當點B的對應點落在軸的正半軸上時,求點的坐標;
Ⅱ若,,如圖3,設邊與BC交于點E,若,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com