如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°, 四邊形ACDE是平行四邊形,連結CEAD于點F,連結BDCE于點G,連結BE. 下列結論中:① CE=BD;        ② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;  ④ CD·AE=EF·CG;一定正確的結論有

     A.1個       B.2個        C.3個       D.4個

 

【答案】

D

【解析】①∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

即:∠BAD=∠CAE,

∵△ABC和△ADE都是等腰直角三角形,

∴AB=AC,AE=AD,

∴△BAD≌△CAE(SAS),

∴CE=BD,

∴故①正確;

②∵四邊形ACDE是平行四邊形,

∴∠EAD=∠ADC=90°,AE=CD,

∵△ADE都是等腰直角三角形,

∴AE=AD,

∴AD=CD,

∴△ADC是等腰直角三角形,

∴②正確;

③∵△ADC是等腰直角三角形,

∴∠CAD=45°,

∴∠BAD=90°+45°=135°,

∵∠EAD=∠BAC=90°,∠CAD=45°,

∴∠BAE=360°-90°-90°-45°=135°,

又AB=AB,AD=AE,

∴△BAE≌△BAD(SAS),

∴∠ADB=∠AEB;

故③正確

④∵△BAD≌△CAE,△BAE≌△BAD,

∴△CAE≌△BAE,

∴∠BEA=∠AEC=∠BDA,

∵∠AEF+∠AFE=90°,

∴∠AFE+∠BEA=90°,

∵∠GFD=∠AFE,

∴∠GDF+GFD=90°,

∴∠CGD=90°,

∵∠FAE=90°,∠GCD=∠AEF,

∴△CGD∽△EAF,

∴CD/EF =CG/AE ,

∴CD•AE=EF•CG.

故④正確,

故選D

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F(xiàn)為線段AD的中點,連CF,
(1)如圖1,當D點在BC上時,BE與CF的數(shù)量關系是
 
,位置關系是
 
,請證明.
精英家教網(wǎng)
(2)如圖2,把△DEC繞C點順時針旋轉一個銳角,其他條件不變,問(1)中的關系是否仍然成立?如果成立請證明.如果不成立,請寫出相應的正確的結論并加以證明.
(3)如圖3,把△DEC繞C點順時針旋轉45°,若∠DCF=30°,直接寫出
BGCG
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點C在AD上,如果△ABC經(jīng)旋轉后能與△ADE重合,那么點
A
是旋轉中心,旋轉的最小度數(shù)為
45
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,BC=3,CD=1.
(1)求證:tan∠AEC=
BCCD

(2)請?zhí)骄緽M與DM的數(shù)量關系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交 CE于點G,連接BE.下列結論中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正確的結論有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長為
2
10
2
10
.(只填結果,不用寫出計算過程)

查看答案和解析>>

同步練習冊答案